1
|
Qin S, Wan X, Kong S, Xu K, Jin J, He S, Chen M. Isorhamnetin ameliorates dopaminergic neuronal damage via targeting FOSL1 to activate AKT/mTOR in 6-OHDA-induced SH-SY5Y cells. J Neurophysiol 2025; 133:22-33. [PMID: 39560297 DOI: 10.1152/jn.00351.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disorder caused by loss of dopaminergic neurons in the substantia nigra compacta, which may result from mitochondrial dysfunction and oxidative stress. Isorhamnetin (Iso) has important antioxidative stress and antiapoptotic effects, this study investigated the effects of Iso on PD in vitro and its underlying mechanisms using a model of 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y cell damage. The results showed that Iso significantly ameliorated 6-OHDA-induced SH-SY5Y cell injury, including decreased cell viability, increased apoptosis and senescence, and oxidative stress injury. Senescence-associated β-galactosidase (SA-β) staining, Western blot (WB), and immunofluorescence suggested that Iso significantly decreased the number of SA-β+ cells and the levels of senescence-associated proteins p21 and p16, and enhanced tyrosine hydroxylase level. Iso markedly reduced the number of apoptotic cells and the levels of cleaved caspase-3 and BAX, as detected by CCK-8, flow cytometry, and WB. The results of DCFH-DA, JC-1 staining, and the measurement of malondialdehyde (MDA) and superoxide dismutase (SOD) content indicated that Iso elevated reactive oxygen species (ROS) generation and mitochondrial membrane potential, lowered MDA content and raised SOD level in the 6-OHDA group. In-depth investigation revealed that Iso activated the AKT/mTOR signal via reducing the expression level of Fos-like antigen (FOSL1), which further exerted the protective effect in SH-SY5Y cells. Overexpression of FOSL1 attenuated the effect of Iso by inhibiting the AKT/mTOR signaling pathway. Taken together, Iso protects against senescence, apoptotic, and oxidative stress injury by targeting FOSL1 to activate the AKT/mTOR signaling pathway in 6-OHDA-induced SH-SY5Y cells, which may provide new insights for PD treatment.NEW & NOTEWORTHY Isorhamnetin (Iso) ameliorated neuronal activity damage, senescence, apoptosis, and oxidative stress injury in 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y cells. Iso activated AKT/mTOR signaling pathway via inhibiting Fos-like antigen (FOSL1) in 6-OHDA-induced SH-SY5Y cells. Overexpression of FOSL1 attenuated the protective effect of Iso against 6-OHDA-induced neuronal damage in SH-SY5Y cells.
Collapse
Affiliation(s)
- Shaochen Qin
- Department of Neurology, The Hospital Affiliated to Shanxi University of Chinese Medicine, Taiyuan, People's Republic of China
| | - Xiaobo Wan
- Department of Acupuncture and moxibustion, The Hospital Affiliated to Shanxi University of Chinese Medicine, Taiyuan, People's Republic of China
| | - Shanshan Kong
- Department of Neurology, The Hospital Affiliated to Shanxi University of Chinese Medicine, Taiyuan, People's Republic of China
| | - Kunmei Xu
- Department of Neurology, The Hospital Affiliated to Shanxi University of Chinese Medicine, Taiyuan, People's Republic of China
| | - Jungong Jin
- Department of Neurosurgery, Xi'an International Medical Center Hospital, Xi'an, People's Republic of China
| | - Shiming He
- Department of Neurosurgery, Xi'an International Medical Center Hospital, Xi'an, People's Republic of China
| | - Mingsheng Chen
- Department of Neurosurgery, Xi'an International Medical Center Hospital, Xi'an, People's Republic of China
| |
Collapse
|
2
|
Yang Z, Chan KW, Abu Bakar MZ, Deng X. Unveiling Drimenol: A Phytochemical with Multifaceted Bioactivities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2492. [PMID: 39273976 PMCID: PMC11397239 DOI: 10.3390/plants13172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Drimenol, a phytochemical with a distinct odor is found in edible aromatic plants, such as Polygonum minus (known as kesum in Malaysia) and Drimys winteri. Recently, drimenol has received increasing attention owing to its diverse biological activities. This review offers the first extensive overview of drimenol, covering its sources, bioactivities, and derivatives. Notably, drimenol possesses a wide spectrum of biological activities, including antifungal, antibacterial, anti-insect, antiparasitic, cytotoxic, anticancer, and antioxidant effects. Moreover, some mechanisms of its activities, such as its antifungal effects against human mycoses and anticancer activities, have been investigated. However, there are still several crucial issues in the research on drimenol, such as the lack of experimental understanding of its pharmacokinetics, bioavailability, and toxicity. By synthesizing current research findings, this review aims to present a holistic understanding of drimenol, paving the way for future studies and its potential utilization in diverse fields.
Collapse
Affiliation(s)
- Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
3
|
Wang L, Wang T, Zhuo Y, Xu S, Liu H, Jiang X, Lu Z, Wang X, Rao H, Wu D, Wang Y, Feng B, Sun M. Cascade Co 8FeS 8@Co 1-xS nano-enzymes trigger efficiently apoptosis-ferroptosis combination tumor therapy. J Colloid Interface Sci 2024; 662:962-975. [PMID: 38382379 DOI: 10.1016/j.jcis.2024.01.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
This study involved the preparation of Metal Organic Frameworks (MOF)-derived Co8FeS8@Co1-xS nanoenzymes with strong interfacial interactions. The nanoenzymes presented the peroxidase (POD)-like activity and the oxidation activity of reduced glutathione (GSH). Accordingly, the dual activities of Co8FeS8@Co1-xS provided a self-cascading platform for producing significant amounts of hydroxyl radical (•OH) and depleting reduced glutathione, thereby inducing tumor cell apoptosis and ferroptosis. More importantly, the Co8FeS8@Co1-xS inhibited the anti-apoptosis protein B-cell lymphoma-2 (Bcl-2) and activated caspase family proteins, which caused tumor cell apoptosis. Simultaneously, Co8FeS8@Co1-xS affected the iron metabolism-related genes such as Heme oxygenase-1 (Hmox-1), amplifying the Fenton response and promoting apoptosis and ferroptosis. Therefore, the nanoenzyme synergistically killed anti-apoptotic tumor cells carrying Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations. Furthermore, Co8FeS8@Co1-xS demonstrated good biocompatibility, which paved the way for constructing a synergistic catalytic nanoplatform for an efficient tumor treatment.
Collapse
Affiliation(s)
- Liling Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Tao Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hehe Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
4
|
Xia Y, Zhang Y, Zhang J, Du Y, Wang Y, Xu A, Li S. Cadmium exposure induces necroptosis of porcine spleen via ROS-mediated activation of STAT1/RIPK3 signaling pathway. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:382-392. [PMID: 37452679 DOI: 10.1002/em.22565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Cadmium (Cd), a heavy metal, is used in a wide range of applications, such as plastics, electroplating process, electronics, and so forth. Due to its bioaccumulation ability, Cd can contaminate soil, water, air and food. To determine the effect of Cd exposure on the necroptosis in pig spleen and its mechanistic investigation, we constructed a model in pigs by feeding them food containing 20 mg/kg Cd. In this study, we analyzed the effects of Cd exposure on pig spleen through HE staining, Quantitative real-time PCR (qRT-PCR), Western blot (WB), and principal component analysis (PCA). Results show that Cd exposure can destroy the structure and function of pig spleen, which is closely related to necroptosis. Further results show that Cd exposure can induce necroptosis through ROS-mediated activation of Signal transducer and activator of transcription 1/Receptor-Interacting Serine/Threonine-Protein Kinase 3 (STAT1/RIPK3) signaling pathway in pig spleen. Additionally, Cd exposure also can affect the stability of mitochondrial-associated endoplasmic reticulum membrane (MAMs) structure, which also contributes to the process of necroptosis. Our study provides insights into the physiological toxicity caused by Cd exposure.
Collapse
Affiliation(s)
- Yu Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Jintao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yongzhen Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yixuan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Anqi Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
5
|
Li N, Yi BJ, Saleem MAU, Li XN, Li JL. Autophagy protects against Cd-induced cell damage in primary chicken hepatocytes via mitigation of oxidative stress and endoplasmic reticulum stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115056. [PMID: 37229871 DOI: 10.1016/j.ecoenv.2023.115056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Cadmium (Cd) is widespread globally in the environment as a toxic metal. Although it is well known to induce hepatotoxicity in the cells, defense mechanisms against the detrimental effects of Cd are still unknown. We examined the role of autophagy (a cellular defense mechanism) on Cd-induced cytotoxicity in bird hepatocytes. Primary chicken hepatocytes were cultured with different concentrations (0, 1, 2.5, 5, and 10 μM) of cadmium chloride (CdCl2) for 12 h. We assessed the effects of CdCl2 on the cell viability, antioxidant status, reactive oxygen species (ROS) generation, autophagy response and endoplasmic reticulum (ER) stress. Further, it is also evaluated that insight into underling molecular mechanisms involved in the study. In this study, CdCl2-induce hepatotoxicity was caused by drastically increased ROS generation as well as a reduction level of antioxidant enzymes. It was also demonstrated that marked activation of ER stress markers (GRP78, IRE1, PERK, ATF4, ATF6 and XBP-1 s) was observed. Simultaneously, increased activation of autophagy in low-dose CdCl2 (1 μM) exposed group was observed, but high-dose CdCl2 (10 μM) inhibited autophagy and significantly promoted apoptosis, as indicated by the expression of the autophagy related genes for P62, Beclin-1, ATG3, ATG5, ATG9, and the detection of autophagic vacuoles. Pretreatment with autophagy agonist Rapamycin (RAP) has successfully reduced ROS production, attenuated ER stress and enhanced hepatocytes viability, while the autophagy inhibitor 3-Methyladenine (3-MA) had the opposite effect. Hence, these findings stipulate that Cd could inhibit viability of hepatocytes in a dose-dependent manner. Autophagy relieves hepatotoxicity of Cd via reducing ROS generation and regulating ER stress. We identified autophagy as a novel protective mechanism involved in Cd-mediated chicken hepatotoxicity.
Collapse
Affiliation(s)
- Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; National Research Institute for Family Planning, Beijing 100081, PR China
| | - Bao-Jin Yi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | | | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
6
|
Xuan L, Guo J, Xia D, Li L, Wang D, Chang Y. Albicanol antagonizes PFF-induced mitochondrial damage and reduces inflammatory factors by regulating innate immunity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115014. [PMID: 37196524 DOI: 10.1016/j.ecoenv.2023.115014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
As an environmental pollutant, profenofos (PFF) can seriously endanger human health through the food chain. Albicanol is a sesquiterpene compound with antioxidant, anti-inflammatory, and anti-aging properties. Previous studies have shown that Albicanol can antagonize apoptosis and genotoxicity caused by PFF exposure. However, the toxicity mechanism of PFF regulating hepatocyte immune function, apoptosis, and programmed necrosis and the role of Albicanol in this process have not been reported yet. In this study, grass carp hepatocytes (L8824) were treated with PFF (200 μM) or combined with Albicanol (5 ×10-5 μg mL-1) for 24 h to establish an experimental model. The results of JC-1 probe staining and Fluo-3 AM probe staining showed increased free calcium ions and decreased mitochondrial membrane potential in L8824 cells after PFF exposure, suggesting that PFF exposure may lead to mitochondrial damage. Real-time quantitative PCR and Western blot results showed that PFF exposure could increase the transcription of innate immunity-related factors (C3, Pardaxin 1, Hepcidin, INF-γ, IL-8, and IL-1β) in L8824 cells. PFF up-regulated the TNF/NF-κB signaling pathway and the expression of caspase-3, caspase-9, Bax, MLKL, RIPK1, and RIPK3 and down-regulated the expression of Caspase-8 and Bcl-2. Albicanol can antagonize the above-mentioned effects caused by PFF exposure. In conclusion, Albicanol antagonized the mitochondrial damage, apoptosis, and necroptosis of grass carp hepatocytes caused by PFF exposure by inhibiting the TNF/NF-κB pathway in innate immunity.
Collapse
Affiliation(s)
- Lihui Xuan
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinming Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Dexin Xia
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lu Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Daining Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ying Chang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Gao M, Zhu H, Guo J, Lei Y, Sun W, Lin H. Tannic acid through ROS/TNF-α/TNFR 1 antagonizes atrazine induced apoptosis, programmed necrosis and immune dysfunction of grass carp hepatocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 131:312-322. [PMID: 36220537 DOI: 10.1016/j.fsi.2022.09.062] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Atrazine (ATR) is a commonly used triazine herbicide, which will remain in the water source, soil and biological muscle tissue for a long time, threatening the survival of related organisms and future generations. Tannic acid (TAN), a glucosyl compound found in gallnuts, has previously been shown to antagonize heavy metal toxicity, antioxidant activity, and inflammation. However, it is unclear whether TAN can antagonize ATR-induced Grass carp hepatocytes (L8824 cells) cytotoxicity. Therefore, we treated L8824 cells with 3 μg mL-1 ATR for 24 h to establish a toxic group model. The experimental data of flow cytometry and AO/EB staining together showed that the ratio of apoptosis and necrosis in L8824 cells after ATR exposure was significantly higher than that in the control group. Furthermore, RT-qPCR showed that inflammatory factors (TNF-α, IL-1β, IL-6, INF-γ) were up-regulated and antimicrobial peptides (hepcidin, β-defensin and LEAP2) were induced down-regulated in L8824 cells, leading to immune dysfunction. The measurement results of oxidative stress-related indicators showed that the levels of ROS and MDA increased after ATR exposure, the overall anti-oxidative system was down-regulated. Western blotting confirmed that TNF-α/TNFR 1-related genes were also up-regulated. This indicates that ATR stimulates oxidative stress in L8824 cells, which in turn promotes the binding of TNF-α to TNFR 1. In addition, TRADD, FADD, Caspase-3, P53, RIP1, RIP3 and MLKL were found to be significantly up-regulated by Western blotting and RT-qPCR. Conditioned after ATR exposure compared to controls. It indicates that ATR activates apoptosis and necrosis of TNF-α/TNFR 1 pathway by inducing oxidative stress in L8824 cells. Furthermore, the use of TAN (5 μM) significantly alleviated the toxic effects of ATR on L8824 cells mentioned above. In conclusion, TAN restrains ATR-induced apoptosis, programmed necrosis and immune dysfunction through the ROS/TNF-α/TNFR 1 pathway.
Collapse
Affiliation(s)
- Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huijun Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jinming Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongiiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
8
|
The mechanism of the cadmium-induced toxicity and cellular response in the liver. Toxicology 2022; 480:153339. [PMID: 36167199 DOI: 10.1016/j.tox.2022.153339] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 01/22/2023]
Abstract
Cadmium is a toxic element to which man can be exposed at work or in the environment. Cd's most salient toxicological property is its exceptionally long half-life in the human body. Once absorbed, Cd accumulates in the human body, particularly in the liver. The cellular actions of Cd are extensively documented, but the molecular mechanisms underlying these actions are still not resolved. The liver manages the cadmium to eliminate it by a diverse mechanism of action. Still, many cellular and physiological responses are executed in the task, leading to worse liver damage, ranging from steatosis, steatohepatitis, and eventually hepatocellular carcinoma. The progression of cadmium-induced liver damage is complex, and it is well-known the cellular response that depends on the time in which the metal is present, ranging from oxidative stress, apoptosis, adipogenesis, and failures in autophagy. In the present work, we aim to present a review of the current knowledge of cadmium toxicity and the cellular response in the liver.
Collapse
|
9
|
Song C, Fan Q, Tang Y, Sun Y, Wang L, Wei M, Chang Y. Overexpression of DfRaf from Fragrant Woodfern (Dryopteris fragrans) Enhances High-Temperature Tolerance in Tobacco (Nicotiana tabacum). Genes (Basel) 2022; 13:genes13071212. [PMID: 35885995 PMCID: PMC9321628 DOI: 10.3390/genes13071212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023] Open
Abstract
Heat stress seriously affects medicinal herbs’ growth and yield. Rubisco accumulation factor (Raf) is a key mediator regulating the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which plays important roles in carbon assimilation and the Calvin cycle in plants. Raf has been studied in many plants, but has rarely been studied in the important medicinal plant fragrant woodfern (Dryopteris fragrans). The aim of this study was to analyze the effects of Raf on carbohydrate metabolism and the response to heat stress in medicinal plants. In this study, high temperature treatment upregulated the expression of DfRaf, which was significantly higher than that of phosphoribokinase (DfPRK), Rubisco small subunits (DfRbcS), Rubisco large subunits (DfRbcL) and Rubisco activase (DfRCA). The subcellular localization showed that the DfRaf proteins were primarily located in the nucleus; DfPRK, DfRbcS, DfRbcL and DfRCA proteins were primarily located in the chloroplast. We found that overexpression of DfRaf led to increased activity of Rubisco, RCA and PRK under high-temperature stress. The H2O2, O2− and MDA content of the DfRaf-OV-L2 and DfRaf-OV-L6 transgenic lines were significantly lower than those of WT and VC plants under high-temperature stress. The photosynthetic pigments, proline, soluble sugar content and ROS-scavenging ability of the DfRaf-OV-L2 and DfRaf-OV-L6 transgenic lines were higher than those of WT and VC plants under high-temperature stress. The results showed that overexpression of the DfRaf gene increased the Rubisco activity, which enhanced the high-temperature tolerance of plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Chang
- Correspondence: ; Tel.: +86-(0451)-5519-0410
| |
Collapse
|
10
|
Zhao Y, Zhang H, Hao D, Wang J, Zhu R, Liu W, Liu C. Selenium regulates the mitogen-activated protein kinase pathway to protect broilers from hexavalent chromium-induced kidney dysfunction and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113629. [PMID: 35576799 DOI: 10.1016/j.ecoenv.2022.113629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/27/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Hexavalent chromium [Cr (VI)] is a common environmental pollutant. Although selenium (Se) can antagonize the toxicity of Cr (VI), the specific underlying mechanism has not been identified. To investigate this mechanism, we used potassium dichromate (K2Cr2O7) and selenium-rich yeast (SeY) to construct single Cr (VI)- and combined Se/Cr (VI)-exposed broiler models during a 42-day period. Broilers were randomly assigned to the control (C), SeY (Se), SeY + Cr (VI) (Se/Cr), and Cr (VI) (Cr) groups. The antagonistic mechanisms of Se and Cr (VI) were evaluated using histopathological evaluation, serum and tissue biochemical tests, real-time fluorescence quantitative polymerase chain reaction, and western blotting. The results suggested that Se alleviated the morphological and structural damage to renal tubules and glomeruli, while reducing the organ index, creatinine levels, and blood urea nitrogen levels in the kidneys of Cr (VI)-exposed broilers. Furthermore, Cr (VI) reduced the levels of superoxide dismutase and glutathione, and increased the levels of malondialdehyde, in broiler kidney tissues. However, Se alleviated Cr (VI)-induced oxidative stress by increasing the levels of superoxide dismutase and glutathione, and decreasing the levels of malondialdehyde, within a certain range. Compared to the C group, the levels of p38, JNK, p-p38, p-JNK, p-p38/p38, and p-JNK/JNK significantly increased, whereas those of ERK, p-ERK, and p-ERK/ERK decreased, in the Cr group. Compared to the Cr group, the levels of p38, JNK, p-p38, p-JNK, p-p38/p38, and p-JNK/JNK significantly decreased, whereas those of ERK, p-ERK, and p-ERK/ERK increased, in the Se/Cr group. Furthermore, the levels of p53, c-Myc, Bax, Cyt-c, caspase-9, and caspase-3 significantly increased, and those of Bcl-2 and Bcl-2/Bax significantly decreased, following Cr (VI) exposure, while Se restored the expression of these genes. In conclusion, our findings suggest that SeY can protect against Cr (VI)-induced dysfunction and apoptosis by regulating the mitogen-activated protein kinase pathway activated by oxidative stress in broiler kidney tissues.
Collapse
Affiliation(s)
- Yanbing Zhao
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Huan Zhang
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Dezheng Hao
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Jingqiu Wang
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Ruixin Zhu
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Weina Liu
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Ci Liu
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China.
| |
Collapse
|
11
|
Song C, Guan Y, Zhang D, Tang X, Chang Y. Integrated mRNA and miRNA Transcriptome Analysis Suggests a Regulatory Network for UV-B-Controlled Terpenoid Synthesis in Fragrant Woodfern ( Dryopteris fragrans). Int J Mol Sci 2022; 23:5708. [PMID: 35628519 PMCID: PMC9148142 DOI: 10.3390/ijms23105708] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Fragrant woodfern (Dryopteris fragrans) is a medicinal plant rich in terpenoids. Ultraviolet-B (UV-B) light could increase concentration of terpenoids. The aim of this study was to analyze how UV-B regulates the terpenoid synthesis of the molecular regulatory mechanism in fragrant woodfern. In this study, compared with the control group, the content of the terpenes was significantly higher in fragrant woodfern leaves under UV-B treatment for 4 days (d). In order to identify how UV-B regulates the terpenoid metabolic mechanism in fragrant woodfern, we examined the mRNAs and small RNAs in fragrant woodfern leaves under UV-B treatment. mRNA and miRNA-seq identified 4533 DEGs and 17 DEMs in the control group compared with fragrant woodfern leaves under UV-B treatment for 4 d. mRNA-miRNA analysis identified miRNA target gene pairs consisting of 8 DEMs and 115 miRNAs. The target genes were subjected to GO and KEGG analyses. The results showed that the target genes were mainly enriched in diterpene biosynthesis, terpenoid backbone biosynthesis, plant hormone signal transduction, MEP pathway and MVA pathway, in which miR156 and miR160 regulate these pathways by targeting DfSPL and DfARF, respectively. The mRNA and miRNA datasets identified a subset of candidate genes. It provides the theoretical basis that UV-B regulates the terpenoid synthesis of the molecular regulatory mechanism in fragrant woodfern.
Collapse
Affiliation(s)
- Chunhua Song
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (C.S.); (D.Z.); (X.T.)
| | - Yalin Guan
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China;
| | - Dongrui Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (C.S.); (D.Z.); (X.T.)
| | - Xun Tang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (C.S.); (D.Z.); (X.T.)
| | - Ying Chang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (C.S.); (D.Z.); (X.T.)
| |
Collapse
|
12
|
Lihui X, Xiaojie Q, Hao Y, Jialiang C, Jinming G, Ying C. Albicanol modulates oxidative stress and the p53 axis to suppress profenofos induced genotoxicity in grass carp hepatocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 122:325-333. [PMID: 35143987 DOI: 10.1016/j.fsi.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/23/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The organophosphorus pesticide profenofos (PFF) is widely used as an environmental contaminant, and it can remain in water bodies causing serious harm to aquatic organisms. Albicanol is a sesquiterpenoid with potent antioxidant and antagonistic activities against heavy metal toxicity. However, the mechanism of PFF induced genotoxicity in fish hepatocytes and the role Albicanol can play in this process are unknown. In this study, the model was established by treating grass carp hepatocytes with PFF (150 μM) and/or Albicanol (5 × 10-5 μg mL-1) for 24 h. The results showed that PFF exposure arrested L8824 cells in the G1-S phase. PFF caused the increase of MDA level in L8824 cells, while the decrease of SOD, CAT and T-AOC levels caused oxidative stress. Elevated levels of γH2AX, tail moment, tail length, % DNA and 8-OHdG indicated that PFF caused DNA damage in L8824 cells. PFF inhibited the expression levels of cell cycle related regulatory genes (cyclin A, cyclin D, cyclin E, CDK2 and CDK4) by upregulating p53/p21 genes and activating the p53 signaling pathway. Albicanol was used to significantly reduce the above effects caused by PFF exposure on hepatocytes in grass carp. Albicanol could reduce the increase in the proportion of cells in the G1-S phase caused by PFF. In summary, Albicanol could inhibit the genotoxicity of L8824 cells resulted from PFF exposure by decreasing oxidative stress and the p53 pathway.
Collapse
Affiliation(s)
- Xuan Lihui
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Qiu Xiaojie
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Hao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Chu Jialiang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Guo Jinming
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chang Ying
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
13
|
Chen H, Chen J, Shi X, Li L, Xu S. Naringenin protects swine testis cells from bisphenol A-induced apoptosis via Keap1/Nrf2 signaling pathway. Biofactors 2022; 48:190-203. [PMID: 34914851 DOI: 10.1002/biof.1814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA) has caused serious pathologies in varying organs of humans and animals, especially reproductive organs. Naringenin (NRG) is a flavanone compound that has shown protective effects against several environmental chemicals through suppression of oxidative stress and activation of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Herein, we described the discovery path of NRG inhibition on apoptosis in BPA exposed swine testis (ST) cells through targeting Kelch-like ech-associated protein (Keap1). We found that NRG could specifically bound to the active residues of DGR domain in Keap1, thereby activating Nrf2 signaling pathway, and then increasing the levels of SOD, GPx and CAT, and finally inhibiting oxidative stress and mitochondrial apoptosis induced by BPA in ST cells. Altogether, our results showed that NRG inhibits oxidative stress and mitochondrial apoptosis induced by BPA in ST cells by targeting Keap1/Nrf2 signaling pathway, indicating that NRG could serve as an antagonistic therapy against BPA.
Collapse
Affiliation(s)
- Huijie Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
| | - Jianqing Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
14
|
Lihui X, Jinming G, Yalin G, Hemeng W, Hao W, Ying C. Albicanol inhibits the toxicity of profenofos to grass carp hepatocytes cells through the ROS/PTEN/PI3K/AKT axis. FISH & SHELLFISH IMMUNOLOGY 2022; 120:325-336. [PMID: 34856373 DOI: 10.1016/j.fsi.2021.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Profenofos (PFF) as an environmental pollutant seriously harms the health of aquatic animals, and even endangers human safety through the food chain. Albicanol, a sesquiterpenoid extraction from the Dryopteris fragrans, has previously been shown to effectively exhibit anti-aging, anti-oxidant, and antagonize the toxicity of heavy metals. However, the mechanism of hepatocyte toxicity caused by PFF and the role that Albicanol plays in this process are still unclear. In this study, a PFF poisoning model was established by treating grass carp hepatocytes cells with PFF (150 μM) for 24 h The results of AO/EB staining, Tunel staining and flow cytometry showed that the proportion of apoptotic liver cells increased significantly after exposure. The results of ROS staining show that compared with the control group, ROS levels and PTEN/PI3K/AKT-related gene expression were up-regulated after PFF exposure. RT-qPCR and Western blotting results showed that the expression of PTEN/PI3K/AKT related genes was up-regulated. These results indicate that PFF can induce oxidative stress in hepatocytes and inhibit the phosphorylation of AKT. We further found that the expressions of Bax, CytC, Caspase-3, Caspase-9, Caspase-8 and TNFR1 after PFF exposure were significantly higher than those of the control group, and Bcl-2/Bax was significantly lower than that of the control group. These results indicate that PFF can induce oxidative stress in hepatocytes and inhibit the phosphorylation of AKT and activate mitochondrial apoptosis. Using Albicanol (5 × 10-5 μg mL-1) can significantly reduce the above-mentioned effects of PFF exposure on grass carp hepatocytes cells. In summary, Albicanol inhibits PFF-induced apoptosis by regulating the ROS/PTEN/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Xuan Lihui
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Guo Jinming
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Guan Yalin
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Wang Hemeng
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Wu Hao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chang Ying
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
15
|
Chen D, Ran D, Wang C, Liu Y, Ma Y, Song R, Gao Y, Liu Z. Role of mitochondrial dysfunction and PINK1/Parkin-mediated mitophagy in Cd-induced hepatic lipid accumulation in chicken embryos. Life Sci 2021; 284:119906. [PMID: 34478761 DOI: 10.1016/j.lfs.2021.119906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/01/2022]
Abstract
The present study was performed to investigate the effects of Cd exposure on lipid metabolism and mitochondrial dysfunction and to explore the role of mitophagy in Cd-induced dysregulation of lipid metabolism in chicken embryo liver tissues and hepatocytes. To this end, seven-day-old chicken embryos were exposed to different concentrations of Cd for 7 days, and primary chicken embryo hepatocytes were treated with Cd at four different concentrations for 6 h. Furthermore, the mitophagy inhibitor cyclosporine A (CsA) was used to investigate the role of mitophagy in Cd-induced disruption of lipid metabolism. Lipid accumulation, the expression levels of genes involved in lipid metabolism, mitochondrial dysfunction, and mitophagy were measured. The results demonstrated that Cd exposure increases hepatic triglyceride (TG) accumulation and the expression levels of lipogenic genes while decreasing those of lipolytic genes. Furthermore, Cd exposure was observed to alter mitochondrial morphology in terms of reduced size, excessive mitochondrial damage, and the formation of mitophagosomes. The co-localization of lysosome-associated membrane glycoprotein 2 and LC3 puncta was significantly increased in primary chicken embryo hepatocytes after Cd exposure. Moreover, Cd exposure increased LC3, PINK1, and Parkin protein expression levels. CsA effectively alleviated Cd-induced mitochondrial dysfunction, blocked mitochondrial membrane potential collapse, and suppressed PINK1/Parkin-mediated mitophagy. Furthermore, CsA treatment reversed the Cd-induced TG accumulation in liver tissues but further increased it in hepatocytes. Taken together, our findings demonstrate (for the first time) the importance of mitochondrial dysfunction and mitophagy via the PINK1/Parkin pathway in Cd-induced disruption of lipid metabolism.
Collapse
Affiliation(s)
- Dawei Chen
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, PR China
| | - Di Ran
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Chao Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yinyin Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, PR China
| | - Yonggang Ma
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Ruilong Song
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yushi Gao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, PR China
| | - Zongping Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|