1
|
Chen W, Li H, Zhang X, Sang Y, Nie Z. Microfluidic preparation of monodisperse PLGA-PEG/PLGA microspheres with controllable morphology for drug release. LAB ON A CHIP 2024; 24:4623-4631. [PMID: 39248189 DOI: 10.1039/d4lc00486h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Monodisperse biodegradable polymer microspheres show broad applications in drug delivery and other fields. In this study, we developed an effective method that combines microfluidics with interfacial instability to prepare monodispersed poly(lactic-co-glycolic acid)-b-polyethylene glycol (PLGA-PEG)/poly(lactic-co-glycolic acid) (PLGA) microspheres with tailored surface morphology. By adjusting the mass ratio of PLGA-PEG to PLGA, the concentration of stabilizers and the type of PLGA, we generated microspheres with various unique folded morphologies, such as "fishtail-like", "lace-like" and "sponge-like" porous structures. Additionally, we demonstrated that risperidone-loaded PLGA-PEG/PLGA microspheres with these folded morphologies significantly enhanced drug release, particularly in the initial stage, by exhibiting a logarithmic release profile. This feature could potentially address the issue of delayed release commonly observed in sustained-release formulations. This study presents a straightforward yet effective approach to construct precisely engineered microspheres offering enhanced control over drug release dynamics.
Collapse
Affiliation(s)
- Wenwen Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Hao Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Xinyue Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Yutao Sang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| |
Collapse
|
2
|
Gao F, Rafiq M, Cong H, Yu B, Shen Y. Current research status and development prospects of embolic microspheres containing biological macromolecules and others. Int J Biol Macromol 2024; 267:131494. [PMID: 38608974 DOI: 10.1016/j.ijbiomac.2024.131494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Transcatheter arterial embolization (TACE) has been used in the treatment of malignant tumors, sudden hemorrhage, uterine fibroids, and other diseases, and with advances in imaging techniques and devices, materials science, and drug release technology, more and more embolic agents that are drug-carrying, self-imaging, or have multiple functions are being developed. Microspheres provide safer and more effective therapeutic results as embolic agents, with their unique spherical appearance and good embolic properties. Embolic microspheres are the key to arterial embolization, blocking blood flow and nutrient supply to the tumor target. This review summarizes some of the currently published embolic microspheres, classifies embolic microspheres according to matrix, and summarizes the characteristics of the microsphere materials, the current status of research, directions, and the value of existing and potential applications. It provides a direction to promote the development of embolic microspheres towards multifunctionalization, and provides a reference to promote the research and application of embolic microspheres in the treatment of tumors.
Collapse
Affiliation(s)
- Fengyuan Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
3
|
Shen Y, Zhang B, Yi Z, Zhang L, Ling J, Wang S, Sun Z, Iqbal MZ, Kong X. Microfluidic fabrication of X-ray-visible sodium hyaluronate microspheres for embolization. RSC Adv 2023; 13:20512-20519. [PMID: 37435366 PMCID: PMC10331790 DOI: 10.1039/d3ra02812g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Catheter embolization is a minimally invasive technique that relies on embolic agents and is now widely used to treat various high-prevalence medical diseases. Embolic agents usually need to be combined with exogenous contrasts to visualize the embolotherapy process. However, the exogenous contrasts are quite simply washed away by blood flow, making it impossible to monitor the embolized location. To solve this problem, a series of sodium hyaluronate (SH) loaded with bismuth sulfide (Bi2S3) nanorods (NRs) microspheres (Bi2S3@SH) were prepared in this study by using 1,4-butaneglycol diglycidyl ether (BDDE) as a crosslinker through single-step microfluidics. Bi2S3@SH-1 microspheres showed the best performance among other prepared microspheres. The fabricated microspheres had uniform size and good dispersibility. Furthermore, the introduction of Bi2S3 NRs synthesized by a hydrothermal method as Computed Tomography (CT) contrast agents improved the mechanical properties of Bi2S3@SH-1 microspheres and endowed the microspheres with excellent X-ray impermeability. The blood compatibility and cytotoxicity test showed that the Bi2S3@SH-1 microspheres had good biocompatibility. In particular, the in vitro simulated embolization experiment results indicate that the Bi2S3@SH-1 microspheres had excellent embolization effect, especially for the small-sized blood vessels of 500-300 and 300 μm. The results showed the prepared Bi2S3@SH-1 microspheres have good biocompatibility and mechanical properties, as well as certain X-ray visibility and excellent embolization effects. We believe that the design and combination of this material has good guiding significance in the field of embolotherapy.
Collapse
Affiliation(s)
- Yang Shen
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Baoqu Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Zihan Yi
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Lan Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Jing Ling
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Shibo Wang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Zhichao Sun
- The Department of Medical Imaging, The First Medical College of Zhejiang Chinese Medical University Hangzhou 310053 China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering Hangzhou 310018 China
| |
Collapse
|
4
|
Chen M, Guo X, Shen L, Ding J, Yu J, Chen X, Wu F, Tu J, Zhao Z, Nakajima M, Song J, Shu G, Ji J. Monodisperse CaCO 3-loaded gelatin microspheres for reversing lactic acid-induced chemotherapy resistance during TACE treatment. Int J Biol Macromol 2023; 231:123160. [PMID: 36610575 DOI: 10.1016/j.ijbiomac.2023.123160] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Transarterial chemoembolization (TACE) is an important approach for the treatment of unresectable hepatocellular carcinoma (HCC). However, the lactic acid-induced acidic tumor microenvironment (TME) may reduce the therapeutic outcome of TACE. Herein, monodispersed gelatin microspheres loaded with calcium carbonate nanoparticles (CaNPs@Gel-MS) as novel embolic agents were prepared by a simplified microfluidic device. It was found that the particle size and homogeneity of as-prepared CaNPs@Gel-MS were strongly dependent on the flow rates of continuous and dispersed phases, and the inner diameter of syringe needle. The introduction of CaNPs provided the gelatin microspheres with an enhanced ability to encapsulate the chemotherapeutic drug of DOX, as well as a pH-responsive sustained drug release behavior. In vitro results revealed that CaNPs@Gel-MS could largely increase the cellular uptake and chemotoxicity of DOX by neutralizing the lactic acid in the culture medium. In addition, CaNPs@Gel-MS exhibited an excellent and persistent embolic efficiency in a rabbit renal model. Finally, we found that TACE treatment with DOX-loaded CaNPs@Gel-MS (DOX/CaNPs@Gel-MS) had a much stronger ability to inhibit tumor growth than the DOX-loaded gelatin microspheres without CaNPs (DOX@Gel-MS). Overall, CaNPs@Gel-MS could be a promising embolic microsphere that can significantly improve anti-HCC ability by reversing lactic acid-induced chemotherapy resistance during TACE treatment.
Collapse
Affiliation(s)
- Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China; Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China
| | - Xiaoju Guo
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; School of Medicine, Shaoxing University, Shaoxing 312000,China
| | - Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jiayi Ding
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Junchao Yu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xiaoxiao Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China; Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China
| | - Fazong Wu
- Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China; School of Medicine, Shaoxing University, Shaoxing 312000,China; Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China; School of Medicine, Shaoxing University, Shaoxing 312000,China; Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China
| | - Mitsutoshi Nakajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jingjing Song
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China; Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China.
| | - Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China; Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China; School of Medicine, Shaoxing University, Shaoxing 312000,China; Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China.
| |
Collapse
|
5
|
Yuan G, Liu Z, Wang W, Liu M, Xu Y, Hu W, Fan Y, Zhang X, Liu Y, Si G. Multifunctional nanoplatforms application in the transcatheter chemoembolization against hepatocellular carcinoma. J Nanobiotechnology 2023; 21:68. [PMID: 36849981 PMCID: PMC9969656 DOI: 10.1186/s12951-023-01820-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has the sixth-highest new incidence and fourth-highest mortality worldwide. Transarterial chemoembolization (TACE) is one of the primary treatment strategies for unresectable HCC. However, the therapeutic effect is still unsatisfactory due to the insufficient distribution of antineoplastic drugs in tumor tissues and the worsened post-embolization tumor microenvironment (TME, e.g., hypoxia and reduced pH). Recently, using nanomaterials as a drug delivery platform for TACE therapy of HCC has been a research hotspot. With the development of nanotechnology, multifunctional nanoplatforms have been developed to embolize the tumor vasculature, creating conditions for improving the distribution and bioavailability of drugs in tumor tissues. Currently, the researchers are focusing on functionalizing nanomaterials to achieve high drug loading efficacy, thorough vascular embolization, tumor targeting, controlled sustained release of drugs, and real-time imaging in the TACE process to facilitate precise embolization and enable therapeutic procedures follow-up imaging of tumor lesions. Herein, we summarized the recent advances and applications of functionalized nanomaterials based on TACE against HCC, believing that developing these functionalized nanoplatforms may be a promising approach for improving the TACE therapeutic effect of HCC.
Collapse
Affiliation(s)
- Gang Yuan
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Zhiyin Liu
- grid.488387.8Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Weiming Wang
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China ,grid.488387.8Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Mengnan Liu
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China ,grid.488387.8National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yanneng Xu
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Wei Hu
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Yao Fan
- grid.410578.f0000 0001 1114 4286Department of Anus and Intestine Surgery, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China
| | - Xun Zhang
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China
| | - Yong Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Guangyan Si
- Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
6
|
Jiang Z, Shi H, Tang X, Qin J. Recent advances in droplet microfluidics for single-cell analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Angiographic Revascularization after Bariatric Embolization in a Swine Model. J Vasc Interv Radiol 2022; 33:648-652.e2. [PMID: 35636834 PMCID: PMC9179830 DOI: 10.1016/j.jvir.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
This study evaluated fundal arteriole angiographic revascularization after embolization with embolic microspheres of 3 different diameters in a swine model (16 swine, 31 arterioles). In the 50-μm group, 7 of 11 (64%) arterioles recanalized completely, 3 of 11 (27%) arterioles recanalized partially, and 1 of 11 (9%) arterioles had collateralization (no recanalization). In the 100- to 300-μm group, 7 of 10 (70%) arterioles recanalized completely and 3 of 10 (30%) arterioles) recanalized partially. In the 300- to 500-μm group, 7 of 10 (70%) arterioles recanalized completely, 1 of 10 (10%) arterioles recanalized partially, and 2 of 10 (20%) arterioles had collateralization. No difference was found between the groups in the degree of recanalization (P = .64). All embolized arterioles exhibited some degree of angiographic revascularization, irrespective of the microsphere size.
Collapse
|
8
|
Liu D, Sun M, Zhang J, Hu R, Fu W, Xuanyuan T, Liu W. Single-cell droplet microfluidics for biomedical applications. Analyst 2022; 147:2294-2316. [DOI: 10.1039/d1an02321g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review focuses on the recent advances in the fundamentals of single-cell droplet microfluidics and its applications in biomedicine, providing insights into design and establishment of single-cell microsystems and their further performance.
Collapse
Affiliation(s)
- Dan Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Meilin Sun
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jinwei Zhang
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Rui Hu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Wenzhu Fu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Tingting Xuanyuan
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Wenming Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
9
|
Vairavamurthy J, Yuan F, Anders RA, Kraitchman DL, Weiss CR. Identifying the Ideal Target Vessel Size for Bariatric Embolization: Histologic Analysis of Swine and Human Gastric Fundi. J Vasc Interv Radiol 2022; 33:28-32. [PMID: 34980451 PMCID: PMC8740629 DOI: 10.1016/j.jvir.2021.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/03/2023] Open
Abstract
This study aimed to identify the ideal arteriole size to target in bariatric embolization, with the goal of maximizing weight loss efficacy while maintaining patient safety. Although all published clinical trials of bariatric embolization have used embolic microspheres that were at least 300 μm in diameter, optimal weight loss outcomes have been achieved safely in swine using 50-μm embolics. Human fundal remnants from bariatric surgery were compared with swine fundal sections after bariatric embolization with 50-μm embolic microspheres to assess the ideal fundal vessel size for bariatric embolization. In swine, the 50-μm embolic microspheres deposited in the luminal half of the submucosa with a mean arteriole size of 49 μm ± 30. The mean arteriole diameter in the corresponding submucosal layer of the human gastric fundi was 40 μm ± 30. These measurements may inform future clinical trials and direct the development of embolic agents for bariatric embolization.
Collapse
Affiliation(s)
- Jenanan Vairavamurthy
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Frank Yuan
- Vascular and Interventional Radiology Center, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Hospital/The Johns Hopkins University, Baltimore, MD
| | - Robert A. Anders
- Department of Pathology, The Johns Hopkins Hospital/The Johns Hopkins University, Baltimore, MD
| | - Dara L. Kraitchman
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, MD
| | - Clifford R. Weiss
- Vascular and Interventional Radiology Center, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Hospital/The Johns Hopkins University, Baltimore, MD;,Address for correspondence: Clifford R. Weiss, MD, FSIR, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 1800 Orleans Street, Zayed Tower 7203, Baltimore, MD 21287 (; Telephone: 410-614-1046; Fax: 410-614-1977)
| |
Collapse
|