1
|
Batistatou N, Kritzer JA. Recent advances in methods for quantifying the cell penetration of macromolecules. Curr Opin Chem Biol 2024; 81:102501. [PMID: 39024686 PMCID: PMC11323051 DOI: 10.1016/j.cbpa.2024.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
As the landscape of macromolecule therapeutics advances, drug developers are continuing to aim at intracellular targets. To activate, inhibit, or degrade these targets, the macromolecule must be delivered efficiently to intracellular compartments. Quite often, there is a discrepancy between binding affinity in biochemical assays and activity in cell-based assays. Identifying the bottleneck for cell-based activity requires robust assays that quantify total cellular uptake and/or cytosolic delivery. Recognizing this need, chemical biologists have designed a plethora of assays to make this measurement, each with distinct advantages and disadvantages. In this review, we describe the latest and most promising developments in the last 3 to 4 years.
Collapse
Affiliation(s)
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford MA 02155, USA.
| |
Collapse
|
2
|
Okada S, Shoji K. Microrail-assisted liposome trapping and aligning in microfluidic channels. RSC Adv 2024; 14:18003-18010. [PMID: 38841399 PMCID: PMC11152143 DOI: 10.1039/d4ra02094d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Liposome assemblies with a specific shape are potential cell tissue models for studying intercellular communication. Microfluidic channels that can trap liposomes have been constructed to achieve efficient and high-throughput manipulation and observation of liposomes. However, the trapping and alignment of multiple liposomes in a specific space are still challenging because the liposomes are soft and easily ruptured. In this study, we focused on a microrail-assisted technique for manipulating water-in-oil (w/o) emulsions. In this technique, w/o emulsions are trapped under the microrails through a surface energy gradient. First, we investigated whether the microrail channel can be applied for liposome trapping and alignment and found that the numerical simulations showed that drag forces in the direction of the microrail acted on the liposomes, thereby moving the liposomes from the main channel to the microrail. Next, we designed a microrail device based on the simulation results and trapped liposomes using the device. Resultantly, 24.7 ± 8.5 liposomes were aligned under the microrail within an hour, and the microrail was filled with liposomes for 3 hours. Finally, we prepared the microrail devices with y-shaped and ring-shaped microrails and demonstrated the construction of liposome assemblies with specific shapes, not only the straight shape. Our results indicate that the microrail-assisted technique is a valuable method for manipulating liposomes because it has the potential to provide various-shaped liposome assemblies. We believe the microrail channel will be a powerful tool for constructing liposome-based cell-cell interaction models.
Collapse
Affiliation(s)
- Shun Okada
- Department of Mechanical Engineering, Nagaoka University of Technology 1603-1 Kamitomioka Nagaoka Niigata 940-2188 Japan
| | - Kan Shoji
- Department of Mechanical Engineering, Nagaoka University of Technology 1603-1 Kamitomioka Nagaoka Niigata 940-2188 Japan
| |
Collapse
|
3
|
Govey-Scotland J, Johnstone L, Myant C, Friddin MS. Towards skin-on-a-chip for screening the dermal absorption of cosmetics. LAB ON A CHIP 2023; 23:5068-5080. [PMID: 37938128 DOI: 10.1039/d3lc00691c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Over the past few decades, there have been increasing global efforts to limit or ban the use of animals for testing cosmetic products. This ambition has been at the heart of international endeavours to develop new in vitro and animal-free approaches for assessing the safety of cosmetics. While several of these new approach methodologies (NAMs) have been approved for assessing different toxicological endpoints in the UK and across the EU, there remains an absence of animal-free methods for screening for dermal absorption; a measure that assesses the degree to which chemical substances can become systemically available through contact with human skin. Here, we identify some of the major technical barriers that have impacted regulatory recognition of an in vitro skin model for this purpose and propose how these could be overcome on-chip using artificial cells engineered from the bottom-up. As part of our future perspective, we suggest how this could be realised using a digital biomanufacturing pipeline that connects the design, microfluidic generation and 3D printing of artificial cells into user-crafted synthetic tissues. We highlight milestone achievements towards this goal, identify future challenges, and suggest how the ability to engineer animal-free skin models could have significant long-term consequences for dermal absorption screening, as well as for other applications.
Collapse
Affiliation(s)
- Jessica Govey-Scotland
- Dyson School of Design Engineering, Imperial College London, Exhibition Road, South Kensington, SW7 2AZ, London, UK.
- Institute for Molecular Sciences and Engineering, Imperial College London, Exhibition Road, South Kensington, SW7 2AZ, London, UK
| | - Liam Johnstone
- Office for Product Safety and Standards, 1 Victoria Street, SW1H 0ET, London, UK
| | - Connor Myant
- Dyson School of Design Engineering, Imperial College London, Exhibition Road, South Kensington, SW7 2AZ, London, UK.
| | - Mark S Friddin
- Dyson School of Design Engineering, Imperial College London, Exhibition Road, South Kensington, SW7 2AZ, London, UK.
- Institute for Molecular Sciences and Engineering, Imperial College London, Exhibition Road, South Kensington, SW7 2AZ, London, UK
- fabriCELL, Imperial College London and Kings College London, London, UK
| |
Collapse
|
4
|
Moon HR, Surianarayanan N, Singh T, Han B. Microphysiological systems as reliable drug discovery and evaluation tools: Evolution from innovation to maturity. BIOMICROFLUIDICS 2023; 17:061504. [PMID: 38162229 PMCID: PMC10756708 DOI: 10.1063/5.0179444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Microphysiological systems (MPSs), also known as organ-on-chip or disease-on-chip, have recently emerged to reconstitute the in vivo cellular microenvironment of various organs and diseases on in vitro platforms. These microfluidics-based platforms are developed to provide reliable drug discovery and regulatory evaluation testbeds. Despite recent emergences and advances of various MPS platforms, their adoption of drug discovery and evaluation processes still lags. This delay is mainly due to a lack of rigorous standards with reproducibility and reliability, and practical difficulties to be adopted in pharmaceutical research and industry settings. This review discusses the current and potential use of MPS platforms in drug discovery processes while considering the context of several key steps during drug discovery processes, including target identification and validation, preclinical evaluation, and clinical trials. Opportunities and challenges are also discussed for the broader dissemination and adoption of MPSs in various drug discovery and regulatory evaluation steps. Addressing these challenges will transform long and expensive drug discovery and evaluation processes into more efficient discovery, screening, and approval of innovative drugs.
Collapse
Affiliation(s)
- Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | | | - Tarun Singh
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Bumsoo Han
- Author to whom correspondence should be addressed:. Tel: +1-765-494-5626
| |
Collapse
|
5
|
Tang C, Zhu Y, Bai H, Li G, Liu J, Wu W, Yang Y, Xuan S, Yin H, Chen Z, Lai L, Song Y, Cao M, Qiu B. Spontaneous Separation of Immiscible Organic Droplets on Asymmetric Wedge Channels with Hierarchical Microchannels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49762-49773. [PMID: 37843979 DOI: 10.1021/acsami.3c10211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Spontaneous separation of immiscible organic droplets has substantial research implications for environmental protection and resource regeneration. Compared to the widely explored separation of oil-water mixtures, there are fewer reports on separating mixed organic droplets on open surfaces due to the low surface tension differences. Efficient separation of mixed organic liquids by exploiting the rapid spontaneous transport of droplets on open surfaces remains a challenge. Here, through the fusion of inspiration from the fast droplet transport capability of Sarracenia trichome and the asymmetric wedge channel structure of shorebird beaks, this work proposes a spine with hierarchical microchannels and wedge channels (SHMW). Due to the synergistic effect of capillary force and asymmetric Laplace force, the SHMW can rapidly separate mixed organic droplets into two pure phases without requiring additional energy. In particular, the self-spreading of the oil solution on the open channel surface is utilized to amplify the surface energy difference between two droplets, and SHMW achieves the pickup of oil droplets floating on the surface of the organic solution. The maximum separation efficiency on 3-SHMW can reach 99.63%, and it can also realize the antigravity separation of mixed organic droplets with a surface tension difference as low as 0.87 mN·m-1. Furthermore, SHMW performs controllable separation, oil droplet pickup, and continuous separation and collection of mixed organic droplets. It is expected that this cooperative structure composed of hierarchical microchannels and wedge channels will be realized in resource recovery or chemical reactions in industrial production processes.
Collapse
Affiliation(s)
- Chengning Tang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yuying Zhu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei 230027, Anhui, P. R. China
| | - Haoyu Bai
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Guoqiang Li
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Jiasong Liu
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Weiming Wu
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yi Yang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Sensen Xuan
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Huan Yin
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Zuqiao Chen
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Lin Lai
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yuegan Song
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Moyuan Cao
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Bensheng Qiu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei 230027, Anhui, P. R. China
| |
Collapse
|
6
|
Challenges and opportunities in achieving the full potential of droplet interface bilayers. Nat Chem 2022; 14:862-870. [PMID: 35879442 DOI: 10.1038/s41557-022-00989-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/27/2022] [Indexed: 12/27/2022]
Abstract
Model membranes can be used to elucidate the intricacies of the chemical processes that occur in cell membranes, but the perfectly biomimetic, yet bespoke, model membrane has yet to be built. Droplet interface bilayers are a new type of model membrane able to mimic some features of real cell membranes better than traditional models, such as liposomes and black lipid membranes. In this Perspective, we discuss recent work in the field that is starting to showcase the potential of these model membranes to enable the quantification of membrane processes, such as the behaviour of protein transporters and the prediction of in vivo drug movement, and their use as scaffolds for electrophysiological measurements. We also highlight the challenges that remain to enable droplet interface bilayers to achieve their full potential as artificial cells, and as biological analytical platforms to quantify molecular transport.
Collapse
|
7
|
Stephenson EB, García Ramírez R, Farley S, Adolph-Hammond K, Lee G, Frostad JM, Elvira KS. Investigating the effect of phospholipids on droplet formation and surface property evolution in microfluidic devices for droplet interface bilayer (DIB) formation. BIOMICROFLUIDICS 2022; 16:044112. [PMID: 36035888 PMCID: PMC9402269 DOI: 10.1063/5.0096193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Despite growing interest in droplet microfluidic methods for droplet interface bilayer (DIB) formation, there is a dearth of information regarding how phospholipids impact device function. Limited characterization has been carried out for phospholipids, either computationally (in silico) or experimentally (in situ) in polydimethylsiloxane (PDMS) microfluidic devices, despite recent work providing a better understanding of how other surfactants behave in microfluidic systems. Hence, microfluidic device design for DIB applications relies heavily on trial and error, with many assumptions made about the impact of phospholipids on droplet formation and surface properties. Here, we examine the effects of phospholipids on interfacial tension, droplet formation, wetting, and hence device longevity, using DPhPC as the most widely used lipid for DIB formation. We use a customized COMSOL in silico model in comparison with in situ experimental data to establish that the stabilization of droplet formation seen when the lipid is dosed in the aqueous phase (lipid-in) or in the oil phase (lipid-out) is directly dependent on the effects of lipids on the device surface properties, rather than on how fast they coat the droplet. Furthermore, we establish a means to visually characterize surface property evolution in the presence of lipids and explore rates of device failure in the absence of lipid, lipid-out, and lipid-in. This first exploration of the effects of lipids on device function may serve to inform the design of microfluidic devices for DIB formation as well as to troubleshoot causes of device failure during microfluidic DIB experiments.
Collapse
Affiliation(s)
| | - Ricardo García Ramírez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León, 64849, Mexico
| | | | | | - Gihyun Lee
- Department of Chemistry, University of Victoria, Victoria BC V8P 5C2, Canada
| | | | | |
Collapse
|
8
|
Strutt R, Sheffield F, Barlow NE, Flemming AJ, Harling JD, Law RV, Brooks NJ, Barter LMC, Ces O. UV-DIB: label-free permeability determination using droplet interface bilayers. LAB ON A CHIP 2022; 22:972-985. [PMID: 35107110 DOI: 10.1039/d1lc01155c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Simple diffusion of molecular entities through a phospholipid bilayer, is a phenomenon of great importance to the pharmaceutical and agricultural industries. Current model lipid systems to probe this typically only employ fluorescence as a readout, thus limiting the range of assessable chemical matter that can be studied. We report a new technology platform, the UV-DIB, which facilitates label free measurement of small molecule translocation rates. This is based upon the coupling of droplet interface bilayer technology with implemented fiber optics to facilitate analysis via ultraviolet spectroscopy, in custom designed PMMA wells. To improve on current DIB technology, the platform was designed to be reusable, with a high sampling rate and a limit of UV detection in the low μM regime. We demonstrate the use of our system to quantify passive diffusion in a reproducible and rapid manner where the system was validated by investigating multiple permeants of varying physicochemical properties across a range of lipid interfaces, each demonstrating differing kinetics. Our system permits the interrogation of structural dependence on the permeation rate of a given compound. We present this ability from two structural perspectives, that of the membrane, and the permeant. We observed a reduction in permeability between pure DOPC and DPhPC interfaces, concurring with literature and demonstrating our ability to study the effects of lipid composition on permeability. In relation to the effects of permeant structure, our device facilitated the rank ordering of various compounds from the xanthine class of compounds, where the structure of each permeant differed by a single group alteration. We found that DIBs were stable up to 5% DMSO, a molecule often used to aid solubilisation of pharmaceutical and agrochemical compounds. The ability of our device to rank-order compounds with such minor structural differences provides a level of precision that is rarely seen in current, industrially applied technologies.
Collapse
Affiliation(s)
- Robert Strutt
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Felix Sheffield
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Nathan E Barlow
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Anthony J Flemming
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - John D Harling
- Medicinal Chemistry, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Robert V Law
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Nicholas J Brooks
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Laura M C Barter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Oscar Ces
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| |
Collapse
|
9
|
Korner JL, Elvira KS. The role of temperature in the formation of human-mimetic artificial cell membranes using droplet interface bilayers (DIBs). SOFT MATTER 2021; 17:8891-8901. [PMID: 34543370 DOI: 10.1039/d1sm00668a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Droplet interface bilayers (DIBs) have recently started to be used as human-mimetic artificial cell membranes. DIBs are bilayer sections created at the interface of two aqueous droplets, such that one droplet can be used as a donor compartment and the other as an acceptor compartment for the quantification of molecular transport across the artificial cell membrane. However, synthetic phospholipids are overwhelmingly used to create DIBs instead of naturally derived phospholipids, even though the diverse distribution of phospholipids in the latter is more biomimetic. We present the first systematic study of the role of temperature in DIB formation, which shows that the temperature at which DIBs are formed is a key parameter for the formation of DIBs using naturally derived phospholipids in a microfluidic platform. The phospholipids that are most abundant in mammalian cell membranes (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI)) only form DIBs when the temperature is above the phase transition temperature (Tm). Similarly, DIB formation usually only occurs above the highest Tm of a single phospholipid in a bespoke formulation. In addition, we show a new phenomenon wherein the DIB "melts" without disintegrating for bilayers formed predominantly of phospholipids that occupy cylindrical spaces. We also demonstrate differences in DIB formation rates as well as permeability of these biomimetic membranes. Given the difficulties associated with making DIBs using naturally derived phospholipids, we anticipate this work will illuminate the role of phospholipid phase transition in mono- and bilayer formation and lay the foundation for DIBs to be used as human-mimetic artificial cell membranes.
Collapse
Affiliation(s)
- Jaime L Korner
- Department of Chemistry, University of Victoria, Victoria, BC, Canada.
| | | |
Collapse
|
10
|
Stephenson EB, Elvira KS. Biomimetic artificial cells to model the effect of membrane asymmetry on chemoresistance. Chem Commun (Camb) 2021; 57:6534-6537. [PMID: 34106114 DOI: 10.1039/d1cc02043a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a microfluidic platform that enables the formation of bespoke asymmetric droplet interface bilayers (DIBs) as artificial cell models from naturally-derived lipids. We use them to perform pharmacokinetic assays to quantify how lipid asymmetry affects the permeability of the chemotherapy drug doxorubicin. Previous attempts to model bilayer asymmetry with DIBs have relied on the use of synthetic lipids to achieve asymmetry. Use of natural lipids serves to increase the biomimetic nature of these artificial cells, showcasing the next step towards forming a true artificial cell membrane in vitro. Here we use our microfluidic platform to form biomimetic, asymmetric and symmetric DIBs, with their asymmetry quantified through their life-mimicking degree of curvature. We subsequently examine permeability of these membranes to doxorubicin, and reveal measurable differences in its pharmacokinetics induced by membrane asymmetry, highlighting another factor that potentially contributes to chemoresistance in some forms of cancer.
Collapse
Affiliation(s)
- Elanna B Stephenson
- University of Victoria, Department of Chemistry, Victoria BC, V8W 2Y2, Canada.
| | - Katherine S Elvira
- University of Victoria, Department of Chemistry, Victoria BC, V8W 2Y2, Canada.
| |
Collapse
|
11
|
Schroen K, Berton-Carabin C, Renard D, Marquis M, Boire A, Cochereau R, Amine C, Marze S. Droplet Microfluidics for Food and Nutrition Applications. MICROMACHINES 2021; 12:863. [PMID: 34442486 PMCID: PMC8400250 DOI: 10.3390/mi12080863] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/05/2023]
Abstract
Droplet microfluidics revolutionizes the way experiments and analyses are conducted in many fields of science, based on decades of basic research. Applied sciences are also impacted, opening new perspectives on how we look at complex matter. In particular, food and nutritional sciences still have many research questions unsolved, and conventional laboratory methods are not always suitable to answer them. In this review, we present how microfluidics have been used in these fields to produce and investigate various droplet-based systems, namely simple and double emulsions, microgels, microparticles, and microcapsules with food-grade compositions. We show that droplet microfluidic devices enable unprecedented control over their production and properties, and can be integrated in lab-on-chip platforms for in situ and time-resolved analyses. This approach is illustrated for on-chip measurements of droplet interfacial properties, droplet-droplet coalescence, phase behavior of biopolymer mixtures, and reaction kinetics related to food digestion and nutrient absorption. As a perspective, we present promising developments in the adjacent fields of biochemistry and microbiology, as well as advanced microfluidics-analytical instrument coupling, all of which could be applied to solve research questions at the interface of food and nutritional sciences.
Collapse
Affiliation(s)
- Karin Schroen
- Food Process and Engineering Group, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (K.S.); (C.B.-C.)
| | - Claire Berton-Carabin
- Food Process and Engineering Group, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (K.S.); (C.B.-C.)
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Denis Renard
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | | | - Adeline Boire
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Rémy Cochereau
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Chloé Amine
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Sébastien Marze
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| |
Collapse
|
12
|
Elvira KS. Microfluidic technologies for drug discovery and development: friend or foe? Trends Pharmacol Sci 2021; 42:518-526. [PMID: 33994176 DOI: 10.1016/j.tips.2021.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
There is a point in the evolution of every new technology when questions need to be asked regarding its usefulness and impact. Although microfluidic technologies have drastically decreased the scales at which laboratory processes can be performed and have enabled scientific advances that would have otherwise not been possible, it is time to consider whether these technologies are more disruptive than enabling. Here, my aims are to introduce researchers in the broad fields of drug discovery and development to the advantages and disadvantages of microfluidic technologies, to highlight current work showing how microfluidic technologies can be used at different stages in the drug discovery and development process, to discuss how we can transfer academic breakthroughs in the field of microfluidic technologies to industrial environments, and to examine whether microfluidic technologies have the potential to cause a fundamental paradigm shift in the way that drug discovery and development occurs.
Collapse
|
13
|
El-Beyrouthy J, Freeman E. Characterizing the Structure and Interactions of Model Lipid Membranes Using Electrophysiology. MEMBRANES 2021; 11:319. [PMID: 33925756 PMCID: PMC8145864 DOI: 10.3390/membranes11050319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022]
Abstract
The cell membrane is a protective barrier whose configuration determines the exchange both between intracellular and extracellular regions and within the cell itself. Consequently, characterizing membrane properties and interactions is essential for advancements in topics such as limiting nanoparticle cytotoxicity. Characterization is often accomplished by recreating model membranes that approximate the structure of cellular membranes in a controlled environment, formed using self-assembly principles. The selected method for membrane creation influences the properties of the membrane assembly, including their response to electric fields used for characterizing transmembrane exchanges. When these self-assembled model membranes are combined with electrophysiology, it is possible to exploit their non-physiological mechanics to enable additional measurements of membrane interactions and phenomena. This review describes several common model membranes including liposomes, pore-spanning membranes, solid supported membranes, and emulsion-based membranes, emphasizing their varying structure due to the selected mode of production. Next, electrophysiology techniques that exploit these structures are discussed, including conductance measurements, electrowetting and electrocompression analysis, and electroimpedance spectroscopy. The focus of this review is linking each membrane assembly technique to the properties of the resulting membrane, discussing how these properties enable alternative electrophysiological approaches to measuring membrane characteristics and interactions.
Collapse
Affiliation(s)
| | - Eric Freeman
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
14
|
Bachler S, Ort M, Krämer SD, Dittrich PS. Permeation Studies across Symmetric and Asymmetric Membranes in Microdroplet Arrays. Anal Chem 2021; 93:5137-5144. [PMID: 33721989 PMCID: PMC8014892 DOI: 10.1021/acs.analchem.0c04939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated the permeation of molecules across lipid membranes on an open microfluidic platform. An array of droplet pairs was created by spotting aqueous droplets, dispersed in a lipid oil solution, onto a plate with cavities surrounded by a hydrophobic substrate. Droplets in two adjacent cavities come in contact and form an artificial lipid bilayer, called a droplet interface bilayer (DIB). The method allows for monitoring permeation of fluorescently tagged compounds from a donor droplet to an acceptor droplet. A mathematical model was applied to describe the kinetics and determine the permeation coefficient. We also demonstrate that permeation kinetics can be followed over a series of droplets, all connected via DIBs. Moreover, by changing the lipid oil composition after spotting donor droplets, we were able to create asymmetric membranes that we used to mimic the asymmetry of the cellular plasma membrane. Finally, we developed a protocol to separate and extract the droplets for label-free analysis of permeating compounds by liquid chromatography-mass spectrometry. Our versatile platform has the potential to become a new tool for the screening of drug membrane permeability in the future.
Collapse
Affiliation(s)
- Simon Bachler
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Marion Ort
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zürich 8093, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| |
Collapse
|