1
|
Lim H, Seo Y, Min SJ, Yoo D, Heo DN, Kwon IK, Lee T. Construction of Chitosan Oligosaccharide-Coated Nanostructured Lipid Carriers for the Sustained Release of Strontium Ranelate. Tissue Eng Regen Med 2025; 22:425-440. [PMID: 40072819 PMCID: PMC12122978 DOI: 10.1007/s13770-025-00713-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Strontium ranelate (SR) is an effective bone regeneration drug; however, its low bioavailability and strong hydrophilicity cause a strong cytotoxicity, venous thrombosis, and allergic reactions when administered in its free form. This study aims to enhance the SR bioavailability by utilizing nanostructured lipid carriers (NLC) as a drug delivery system (DDS). METHODS To improve the drug delivery efficiency and sustained release of the NLC, their surfaces were coated with chitosan oligosaccharide (COS), a natural polymer. The synthesis of COS-NLC was confirmed by measuring particle size and zeta potential, while surface morphology was evaluated using atomic force microscopy (AFM). SR loading efficiencies and release profiles were analyzed via reversed-phase high-performance liquid chromatography (RP-HPLC), and cytotoxicity was evaluated in mouse fibroblast L929 cells. RESULTS Particle characterization indicated that the COS coating slightly increased the particle size (i.e., from 128.99 ± 2.77 to 131.46 ± 2.13 nm) and zeta potential (i.e., from - 13.94 ± 0.49 to - 6.58 ± 0.32 mV) of the NLC. The COS-NLC exhibited a high SR-loading efficiency of ~ 86.31 ± 3.28%. An in vitro release test demonstrated an improved sustained release tendency of SR from the COS-NLC compared to that from the uncoated NLC. In cytotoxicity assays using L929 cells, the COS coating reduced the cytotoxicity of the formulated DDS, and the SR-COS-NLC exhibited a 1.4-fold higher cell regeneration effect than SR alone. CONCLUSION These findings suggest that the developed COS-NLC serve as an effective and biocompatible DDS platform for the delivery of poorly bioavailable drugs.
Collapse
Affiliation(s)
- Hayeon Lim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Sung Jun Min
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdae-mun-Gu, Seoul, 02447, Republic of Korea
| | - Daehyeon Yoo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
- Kyung Hee University Medical Science Research Institute, Kyung Hee University, 23 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea.
| |
Collapse
|
2
|
Ashok D, Singh J, Howard HR, Cottam S, Waterhouse A, Bilek MMM. Interfacial engineering for biomolecule immobilisation in microfluidic devices. Biomaterials 2025; 316:123014. [PMID: 39708778 DOI: 10.1016/j.biomaterials.2024.123014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Microfluidic devices are used for various applications in biology and medicine. From on-chip modelling of human organs for drug screening and fast and straightforward point-of-care (POC) detection of diseases to sensitive biochemical analysis, these devices can be custom-engineered using low-cost techniques. The microchannel interface is essential for these applications, as it is the interface of immobilised biomolecules that promote cell capture, attachment and proliferation, sense analytes and metabolites or provide enzymatic reaction readouts. However, common microfluidic materials do not facilitate the stable immobilisation of biomolecules required for relevant applications, making interfacial engineering necessary to attach biomolecules to the microfluidic surfaces. Interfacial engineering is performed through various immobilisation mechanisms and surface treatment techniques, which suitably modify the surface properties like chemistry and energy to obtain robust biomolecule immobilisation and long-term storage stability suitable for the final application. In this review, we provide an overview of the status of interfacial engineering in microfluidic devices, covering applications, the role of biomolecules, their immobilisation pathways and the influence of microfluidic materials. We then propose treatment techniques to optimise performance for various biological and medical applications and highlight future areas of development.
Collapse
Affiliation(s)
- Deepu Ashok
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW, 2006, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; Heart Research Institute, Newtown, NSW, 2042, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia; School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jasneil Singh
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; Heart Research Institute, Newtown, NSW, 2042, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Henry Robert Howard
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sophie Cottam
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW, 2006, Australia; School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Anna Waterhouse
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Marcela M M Bilek
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia; School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
3
|
Liao Q, Lin L, Tang R, Xu Z, Kong S, Lv D, Bai D, Liu Y, Li H. Preparation and characterization of mussel-inspired chitosan/polydopamine films and their feasibility for oral mucosa application. Int J Biol Macromol 2024; 279:135179. [PMID: 39236950 DOI: 10.1016/j.ijbiomac.2024.135179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Oral mucosal lesions (OML), which represent a major public health issue worldwide, include any pathological changes in the oral mucosa, such as ulcers, pigmentation, and swelling. Due to its humid and dynamic complex environment, designing oral mucosal preparations poses significant challenges. Drawing inspiration from mussels, this study employed an eco-friendly one-pot strategy for the preparation of chitosan/polydopamine (CS/PDA) films. We demonstrated that CS-induced polymerization of dopamine monomers under acidic conditions, which might be attributed to the large number of hydrogen bonding sites of CS chains. PDA markedly enhances properties of the CS film and exhibits concentration dependence. At the concentration of 1 wt% PDA, the lap-shear strength and tensile strength of CS/PDA films reached 5.01 ± 0.24 kpa and 4.20 ± 0.78 kpa, respectively, indicating that the mucosal adhesion ability was significantly improved. In comparison with the single CS film, the swelling rate of CS/PDA film decreased by about 30 %. Rheological results also showed that the storage modulus returned to 93 % after cyclic large strain, while the single CS film only recovered to 73 %. Moreover, these films demonstrated good biocompatibility and enhanced oral ulcer healing in rats, providing a new and practical option for the local treatment of OML.
Collapse
Affiliation(s)
- Qian Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhuo Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shasha Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dan Lv
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Donghan Bai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Jiangxi 330006, China.
| |
Collapse
|
4
|
Park SY, Koh WG, Lee HJ. Enhanced hepatotoxicity assessment through encapsulated HepG2 spheroids in gelatin hydrogel matrices: Bridging the gap from 2D to 3D culture. Eur J Pharm Biopharm 2024; 202:114417. [PMID: 39013493 DOI: 10.1016/j.ejpb.2024.114417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
Conventional 2D drug screening often fails to accurately predict clinical outcomes. We present an innovative approach to improve hepatotoxicity assessment by encapsulating HepG2 spheroids in gelatin hydrogel matrices with different mechanical properties. Encapsulated spheroids exhibit sustained liver-specific functionality, enhanced expression of drug-metabolizing enzymes, and increased drug sensitivity compared to 2D cultures. The platform detects critical variations in drug response, with significant differences in IC50 values between 2D and spheroid cultures ranging from 1.3-fold to > 13-fold, particularly for acetaminophen. Furthermore, drug-metabolizing enzyme expression varies across hydrogel concentrations, suggesting a role for matrix mechanical properties in modulating hepatocyte function. This novel spheroid-hydrogel platform offers a transformative approach to hepatotoxicity assessment, providing increased sensitivity, improved prediction, and a more physiologically relevant environment. The use of such advanced in vitro models can accelerate drug development, reduce animal testing, and contribute to improved patient safety and clinical outcomes.
Collapse
Affiliation(s)
- Se Yeon Park
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Hyun Jong Lee
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
5
|
Li Y, Xu F, Liu J, Zhang Q, Fan Y. Rapid-release reversible bonding of PMMA-based microfluidic devices with PBMA coating. Biomed Microdevices 2023; 26:6. [PMID: 38141082 DOI: 10.1007/s10544-023-00690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
PMMA-based microfluidics have been widely used in various applications in biological and chemical fields. In the fabrication process of PMMA-based microfluidics, the substrate and cover plate usually need to be bonded to enclose the microchannel. The bonding process could be permanent or reversible. In some application scenarios, reversible bonding is needed to retrieve the samples inside the channel or reuse the chip. Current reversible bonding methods for PMMA-based microfluidics usually have drawbacks on bonding strength and contaminations from the adhesives used in the bonding process. In this study, a new approach is proposed for the reversible bonding of PMMA-based microfluidics, a layer of PBMA (with a very similar structure to PMMA) was coated on the surface of PMMA and then use the thermal fusion method to achieve the bonding with a high bonding strength, a tensile bonding strength of around 0.8 MPa was achieved. For debond process, a rapid temperature drop will trigger the immediate release of the bonding within several seconds. Detailed bonding strength measurement and biocompatibility tests were also conducted in this study. The proposed bonding method could have wide application potential in the fabrication of PMMA-based microfluidics.
Collapse
Affiliation(s)
- Yusheng Li
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fan Xu
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jing Liu
- Department of Pediatrics, China-Japan Friendship Hospital, 100029, Beijing, China
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, 100029, Beijing, China
| | - Yiqiang Fan
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
6
|
Sanjarnia P, Nourmohammadi J, Hesaraki S. Nanocomposite chitosan dressing incorporating polydopamine‑copper Janus nanoparticle. Int J Biol Macromol 2023; 251:126173. [PMID: 37558027 DOI: 10.1016/j.ijbiomac.2023.126173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
This research aims to introduce a new wound dressing with antibacterial and anti-inflammatory properties made from chitosan and copper-containing Janus nanoparticles (JNPs). The JNPs were synthesized by attaching copper to PDA nanospheres, which were then embedded in Chitosan at different concentrations. The resulting spherical JNPs had a mean size of 208 ± 96 nm, and EDX mapping showed successful adhesion of Cu2+ ions to PDA nanospheres with a total Cu2+ content of 16.5 wt%. The samples exhibited interconnected porous structures, increasing JNPs concentration resulting in larger pore size and higher porosity. The addition of JNPs to 10 % (Ch-JNP 10) resulted in the highest strength, young modulus, and crystallinity, while a reverse trend was observed at higher JNPs content. JNPs improve the antibacterial activity of chitosan-based dressing, especially against E. coli. All samples were biocompatible and did not exhibit any cytotoxic effects. Ch-JNP10 had higher cellular density, confluency, and collagen secretion than other samples. The in vivo study demonstrated that Ch-JNP10 induced epithelialization and oriented collagen fiber formation while reducing inflammation. Overall, Ch-JNP10 may be a potential wound dressing for chronic wounds.
Collapse
Affiliation(s)
- Pegah Sanjarnia
- Faculty of New Sciences and Technologies, Department of Life Science Engineering, University of Tehran, Tehran, Iran
| | - Jhamak Nourmohammadi
- Faculty of New Sciences and Technologies, Department of Life Science Engineering, University of Tehran, Tehran, Iran.
| | - Saeed Hesaraki
- Biomaterials Group, Nanotechnology, and Advanced Materials Department, Materials and Energy Research Center (MERC), Alborz, Iran
| |
Collapse
|
7
|
Trinh KTL, Thai DA, Yang DH, Lee NY. Chitosan: a green adhesive for surface functionalization and fabrication of thermoplastic biomedical microdevices. LAB ON A CHIP 2023; 23:4245-4254. [PMID: 37655654 DOI: 10.1039/d3lc00500c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Chitosan (CS) is a natural polymer that exhibits many biological properties and is used as a biomaterial for antibacterial coatings, tissue engineering, cell research, drug delivery, and negatively charged molecule capture. In our previous study, we used a CS-polydopamine mixture to realize UV-assisted bonding between poly(methyl methacrylate) (PMMA) substrates to fabricate microdevices for self-assembled stem cell spheroid cultures. Herein, we attained reliable adhesive bonding between PMMAs using CS at room temperature assisted by oxygen plasma. The bond strength of adhesion was as high as 2.1 MPa, which could be stable for over two months according to the leak test. The adhesive bonding and surface functionalization of the microchannels were simultaneously completed such that the microdevices could be directly used for mesenchymal stem cell culture for spheroid generation and DNA purification for point-of-care testing (POCT) devices. Surface characterization was performed by contact angle measurements, Fourier-transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. The POCT device allows sequential on-chip DNA purification, amplification, and colorimetric detection of pathogenic bacteria. This method provides a convenient and reliable strategy for the fabrication of PMMA microdevices that can be directly implemented in biological studies and POCT applications without involving prior surface modification steps.
Collapse
Affiliation(s)
- Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea
| | - Duc Anh Thai
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | - Da Hyun Yang
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| |
Collapse
|
8
|
Zhao Y, Li L, Shan Y, Zhou D, Chen X, Cui W, Wang H. In Situ Construction Channels of Lithium-Ion Fast Transport and Uniform Deposition to Ensure Safe High-Performance Solid Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301572. [PMID: 37236175 DOI: 10.1002/smll.202301572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Solid-state lithium-ion batteries (SLIBs) are the promising development direction for future power sources because of their high energy density and reliable safety. To optimize the ionic conductivity at room temperature (RT) and charge/discharge performance to obtain reusable polymer electrolytes (PEs), polyvinylidene fluoride (PVDF), and poly(vinylidene fluoride-hexafluoro propylene) (P(VDF-HFP)) copolymer combined with polymerized methyl methacrylate (MMA) monomers are used as substrates to prepare PE (LiTFSI/OMMT/PVDF/P(VDF-HFP)/PMMA [LOPPM]). LOPPM has interconnected lithium-ion 3D network channels. The organic-modified montmorillonite (OMMT) is rich in the Lewis acid centers, which promoted lithium salt dissociation. LOPPM PE possessed high ionic conductivity of 1.1 × 10-3 S cm-1 and a lithium-ion transference number of 0.54. The capacity retention of the battery remained 100% after 100 cycles at RT and 0.5 C. The initial capacity of one with the second-recycled LOPPM PE is 123.9 mAh g-1 . This work offered a feasible pathway for developing high-performance and reusable LIBs.
Collapse
Affiliation(s)
- Yangmingyue Zhao
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Libo Li
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Yuhang Shan
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Da Zhou
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Xiaochuan Chen
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Wenjun Cui
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Heng Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| |
Collapse
|
9
|
Zhang Y, Sun K, Xie Y, Liang K, Zhang J, Fan Y. Reversible bonding of microfluidics: Review and applications. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:061501. [PMID: 37862510 DOI: 10.1063/5.0142551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/24/2023] [Indexed: 10/22/2023]
Abstract
With the development of microfluidic technology, new materials and fabrication methods have been constantly invented in the field of microfluidics. Bonding is one of the key steps for the fabrication of enclosed-channel microfluidic chips, which have been extensively explored by researchers globally. The main purpose of bonding is to seal/enclose fabricated microchannels for subsequent fluid manipulations. Conventional bonding methods are usually irreversible, and the forced detachment of the substrate and cover plate may lead to structural damage to the chip. Some of the current microfluidic applications require reversible bonding to reuse the chip or retrieve the contents inside the chip. Therefore, it is essential to develop reversible bonding methods to meet the requirements of various applications. This review introduces the most recent developments in reversible bonding methods in microfluidics and their corresponding applications. Finally, the perspective and outlook of reversible bonding technology were discussed in this review.
Collapse
Affiliation(s)
- Y Zhang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - K Sun
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Y Xie
- LK Injection Molding Machine Co., Ltd., Zhongshan, Guangdong, People's Republic of China
| | - K Liang
- LK Injection Molding Machine Co., Ltd., Zhongshan, Guangdong, People's Republic of China
| | - J Zhang
- College of Electronic Science and Control Engineering, Institute of Disaster Prevention, Sanhe, People's Republic of China
| | - Y Fan
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| |
Collapse
|
10
|
Wang A, Feng X, He G, Xiao Y, Zhong T, Yu X. Recent advances in digital microfluidic chips for food safety analysis: Preparation, mechanism and application. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
11
|
El-Sayed NM, El-Bakary MA, Ibrahim MA, Elgamal MA, ElZorkany HE, Elshoky HA. Synthesis and characterization of mussel-inspired nanocomposites based on dopamine-chitosan-iron oxide for wound healing: In vitro study. Int J Pharm 2023; 632:122538. [PMID: 36586630 DOI: 10.1016/j.ijpharm.2022.122538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
There are many challenges faced the soft tissue adhesives in the medical application field. For example, there is a limited effective binding between the medical adhesive and different types of soft tissues. Chitosan (CS) and dopamine (DA) were used as structural units for synthesizing nanocomposites utilized as a wet tissue adhesive. To produce dopamine-chitosan-iron oxide nanocomposites (DA-CS-Fe3O4 NCs), DA was loaded onto chitosan-iron oxide nanocomposites. The nanocomposites have been prepared using ionic gelation method under vigorous homogenization and characterized by different techniques. Fourier-transform infrared spectroscopy (FTIR) have shown that DA-CS- Fe3O4 NCs could attach to the tissue through two possible functional groups, namely, the catechol and amine groups. The results of in vitro scratch wound-healing assay suggested that the prepared DA-CS- Fe3O4 NCs facilitate cell migration (the wound-closure percentage reached 96% at 72 h). All experimental results confirm that DA-CS- Fe3O4 NCs are strongly recommended for use as a soft medical tissue adhesive in wound healing and surgeries such as vascular surgery. In addition, the results of the whole blood clotting, antibacterial assessment, live and dead assay, cytotoxicity test, and wound-healing assay indicate that DA-CS-Fe3O4 NCs can be used as a multifunctional biomedical adhesive.
Collapse
Affiliation(s)
- Nayera M El-Sayed
- Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed A El-Bakary
- Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Medhat A Ibrahim
- Molecular Spectroscopy and Modeling Unit, Spectroscopy Department, National Research Centre, Giza 12622, Egypt
| | - Mohamed A Elgamal
- Congenital and Pediatric Cardiac Surgery, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Heba ElSayed ElZorkany
- Nanotechnology and Advanced Materials Central Lab. (NAMCL), Agricultural Research Center, Giza, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza, Egypt
| | - Hisham A Elshoky
- Nanotechnology and Advanced Materials Central Lab. (NAMCL), Agricultural Research Center, Giza, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza, Egypt; Tumor Biology Research Program, Basic Research Unit, Department of Research, Children's Cancer Hospital Egypt 57357, Cairo 11441, Egypt.
| |
Collapse
|
12
|
Tevlek A, Kecili S, Ozcelik OS, Kulah H, Tekin HC. Spheroid Engineering in Microfluidic Devices. ACS OMEGA 2023; 8:3630-3649. [PMID: 36743071 PMCID: PMC9893254 DOI: 10.1021/acsomega.2c06052] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/12/2022] [Indexed: 05/27/2023]
Abstract
Two-dimensional (2D) cell culture techniques are commonly employed to investigate biophysical and biochemical cellular responses. However, these culture methods, having monolayer cells, lack cell-cell and cell-extracellular matrix interactions, mimicking the cell microenvironment and multicellular organization. Three-dimensional (3D) cell culture methods enable equal transportation of nutrients, gas, and growth factors among cells and their microenvironment. Therefore, 3D cultures show similar cell proliferation, apoptosis, and differentiation properties to in vivo. A spheroid is defined as self-assembled 3D cell aggregates, and it closely mimics a cell microenvironment in vitro thanks to cell-cell/matrix interactions, which enables its use in several important applications in medical and clinical research. To fabricate a spheroid, conventional methods such as liquid overlay, hanging drop, and so forth are available. However, these labor-intensive methods result in low-throughput fabrication and uncontrollable spheroid sizes. On the other hand, microfluidic methods enable inexpensive and rapid fabrication of spheroids with high precision. Furthermore, fabricated spheroids can also be cultured in microfluidic devices for controllable cell perfusion, simulation of fluid shear effects, and mimicking of the microenvironment-like in vivo conditions. This review focuses on recent microfluidic spheroid fabrication techniques and also organ-on-a-chip applications of spheroids, which are used in different disease modeling and drug development studies.
Collapse
Affiliation(s)
- Atakan Tevlek
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
| | - Seren Kecili
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| | - Ozge S. Ozcelik
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| | - Haluk Kulah
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
- The
Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - H. Cumhur Tekin
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| |
Collapse
|
13
|
Zhou Y, Yang Y, Liu R, Zhou Q, Lu H, Zhang W. Research Progress of Polydopamine Hydrogel in the Prevention and Treatment of Oral Diseases. Int J Nanomedicine 2023; 18:2623-2645. [PMID: 37213351 PMCID: PMC10199686 DOI: 10.2147/ijn.s407044] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023] Open
Abstract
Oral diseases represent one of the most prevalent diseases globally and are associated with serious health and economic burdens, greatly altering the quality of life of affected individuals. Various biomaterials play important roles in the treatment of oral diseases. To some extent, the development of biomaterials has promoted progress in clinically available oral medicines. Hydrogels have unique tunable advantages that make them useful in the next generation of regenerative strategies and have been widely applied in both oral soft and hard tissues repair. However, most hydrogels lack self-adhesive properties, which may result in low repair efficacy. Polydopamine (PDA), the primary adhesive component, has attracted increasing attention in recent years. PDA-modified hydrogels exhibit reliable and suitable adherence to tissues and easily integrate into tissues to promote repair efficiency. This paper reviews the latest research progress on PDA hydrogels and elaborates on the mechanism of the reaction between PDA functional groups and hydrogels, and summarizes the biological properties and the applications of PDA hydrogels in the prevention and treatment of the field of oral diseases. It is also proposed that in future research we should simulate the complex microenvironment of the oral cavity as much as possible, coordinate and plan various biological events rationally, and realize the translation from scientific research to clinical practice.
Collapse
Affiliation(s)
- Yuqi Zhou
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yuanmeng Yang
- Department of Preventive Dentistry, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Rongpu Liu
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Qin Zhou
- Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Haixia Lu
- Department of Preventive Dentistry, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Haixia Lu, Department of Preventive Dentistry, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China, Email
| | - Wenjie Zhang
- Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Correspondence: Wenjie Zhang, Department of Prosthodontics, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People’s Republic of China, Email
| |
Collapse
|
14
|
Trinh KTL, Thai DA, Lee NY. Bonding Strategies for Thermoplastics Applicable for Bioanalysis and Diagnostics. MICROMACHINES 2022; 13:1503. [PMID: 36144126 PMCID: PMC9501821 DOI: 10.3390/mi13091503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Microfluidics is a multidisciplinary science that includes physics, chemistry, engineering, and biotechnology. Such microscale systems are receiving growing interest in applications such as analysis, diagnostics, and biomedical research. Thermoplastic polymers have emerged as one of the most attractive materials for microfluidic device fabrication owing to advantages such as being optically transparent, biocompatible, cost-effective, and mass producible. However, thermoplastic bonding is a key challenge for sealing microfluidic devices. Given the wide range of bonding methods, the appropriate bonding approach should be carefully selected depending on the thermoplastic material and functional requirements. In this review, we aim to provide a comprehensive overview of thermoplastic fabricating and bonding approaches, presenting their advantages and disadvantages, to assist in finding suitable microfluidic device bonding methods. In addition, we highlight current applications of thermoplastic microfluidics to analyses and diagnostics and introduce future perspectives on thermoplastic bonding strategies.
Collapse
Affiliation(s)
- Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| | - Duc Anh Thai
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| |
Collapse
|
15
|
Chen L, Ma J, Chen Y, Huang C, Zheng Z, Gao Y, Jiang Z, Wei X, Peng Y, Yu S, Yang L. Polydopamine modified acellular dermal matrix sponge scaffold loaded with a-FGF: Promoting wound healing of autologous skin grafts. BIOMATERIALS ADVANCES 2022; 136:212790. [PMID: 35929322 DOI: 10.1016/j.bioadv.2022.212790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/20/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Despite increasing potentials as a skin regeneration template (DRT) to guide tissue healing, acellular dermal matrix (ADM) is still challenged by issues (like dense architecture, low cellular adhesion and poor vascularization), contributing to necrosis and shedding of upper transplanted skins. Modified with polydopamine (PDA), a novel and porous DRT capable of drug delivery was designed using porcine-derived ADM (PADMS) gels, termed PDA-PADMS. However, it was unclear whether it could efficiently deliver human acidic fibroblast growth factor (a-FGF) and regenerate skin defects. Herein, after being fabricated and optimized with PADMS gels in different ratios (1:6, 1:7, 1:8), PDA-PADMS loading a-FGF (PDA-PADMS-FGF) was evaluated by the morphology, physical& chemical properties, drug release and in-vitro biological evaluations, followed by full-thickness skin defects implanted with PDA-PADMS-FGF covered by transplanted skins. Apart from containing abundant collagen and elastin, porous PADMS (with a loose and uniform structure) was demonstrated to possess controlled release of a-FGF and biocompatibility attributed to PDA coating. Consistent with augmented cellular migration and proliferation in vitro, PDA-PADMS-FGF also accelerated wound healing and reduced scarring, improving collagen arrangement and neovascularization. In conclusion, PDA-PADMS-FGF has a good potential and application prospect as a matrix material for wound repair.
Collapse
Affiliation(s)
- Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China
| | - Yujia Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China
| | - Chaoyang Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China
| | - Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China
| | - Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China
| | - Yujie Peng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, PR China.
| |
Collapse
|
16
|
Giri K, Tsao CW. Recent Advances in Thermoplastic Microfluidic Bonding. MICROMACHINES 2022; 13:486. [PMID: 35334777 PMCID: PMC8949906 DOI: 10.3390/mi13030486] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023]
Abstract
Microfluidics is a multidisciplinary technology with applications in various fields, such as biomedical, energy, chemicals and environment. Thermoplastic is one of the most prominent materials for polymer microfluidics. Properties such as good mechanical rigidity, organic solvent resistivity, acid/base resistivity, and low water absorbance make thermoplastics suitable for various microfluidic applications. However, bonding of thermoplastics has always been challenging because of a wide range of bonding methods and requirements. This review paper summarizes the current bonding processes being practiced for the fabrication of thermoplastic microfluidic devices, and provides a comparison between the different bonding strategies to assist researchers in finding appropriate bonding methods for microfluidic device assembly.
Collapse
Affiliation(s)
| | - Chia-Wen Tsao
- Department of Mechanical Engineering, National Central University, Taoyuan City 320, Taiwan;
| |
Collapse
|
17
|
Zheng X, Chen Y, Dan N, Dan W, Li Z. Highly stable collagen scaffolds crosslinked with an epoxidized natural polysaccharide for wound healing. Int J Biol Macromol 2021; 182:1994-2002. [PMID: 34062157 DOI: 10.1016/j.ijbiomac.2021.05.189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/10/2021] [Accepted: 05/28/2021] [Indexed: 01/13/2023]
Abstract
As a biocompatible and bioactive natural tissue engineering collagen scaffold, porcine acellular dermal matrix (pADM) has limitations for the application in tissue regeneration due to its low strength and rapid biodegradation. Herein, to get a good wound dressing, the epoxy group was added to N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC) to synthesize the epoxidized N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (EHTCC), and the porcine acellular dermal matrix was modified with EHTCC at different dosage of 0, 4, 8, 12, 16 and 20%. The properties of the EHTCC-pADM were evaluated. The results indicated that the thermal stability and mechanical properties of EHTCC-pADM were remarkably improved, and the natural conformation of the matrix was maintained, which was beneficial to natural and excellent biological properties of the pADM. According to the test results of water contact angle, the hydrophilicity of the material was improved, which is conducive to cell adhesion, proliferation and growth. Cytotoxicity experiments showed that the introduction of EHTCC would not adversely affect the biocompatibility of the materials. In vivo experiments showed that EHTCC-pADM could promote wound healing. In conclusion, EHTCC-pADM is a potential collagen-based dressing for wound healing.
Collapse
Affiliation(s)
- Xin Zheng
- National Engineering Research Center for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China; The Research Center of Biomedicine Engineering of Sichuan University, Chengdu 610065, China
| | - Yining Chen
- National Engineering Research Center for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China; The Research Center of Biomedicine Engineering of Sichuan University, Chengdu 610065, China
| | - Nianhua Dan
- National Engineering Research Center for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China; The Research Center of Biomedicine Engineering of Sichuan University, Chengdu 610065, China.
| | - Weihua Dan
- National Engineering Research Center for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China; The Research Center of Biomedicine Engineering of Sichuan University, Chengdu 610065, China.
| | - Zhengjun Li
- National Engineering Research Center for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China; The Research Center of Biomedicine Engineering of Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
Recent Developed Strategies for Enhancing Chondrogenic Differentiation of MSC: Impact on MSC-Based Therapy for Cartilage Regeneration. Stem Cells Int 2021; 2021:8830834. [PMID: 33824665 PMCID: PMC8007380 DOI: 10.1155/2021/8830834] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/20/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Articular cartilage is susceptible to damage, but its self-repair is hindered by its avascular nature. Traditional treatment methods are not able to achieve satisfactory repair effects, and the development of tissue engineering techniques has shed new light on cartilage regeneration. Mesenchymal stem cells (MSCs) are one of the most commonly used seed cells in cartilage tissue engineering. However, MSCs tend to lose their multipotency, and the composition and structure of cartilage-like tissues formed by MSCs are far from those of native cartilage. Thus, there is an urgent need to develop strategies that promote MSC chondrogenic differentiation to give rise to durable and phenotypically correct regenerated cartilage. This review provides an overview of recent advances in enhancement strategies for MSC chondrogenic differentiation, including optimization of bioactive factors, culture conditions, cell type selection, coculture, gene editing, scaffolds, and physical stimulation. This review will aid the further understanding of the MSC chondrogenic differentiation process and enable improvement of MSC-based cartilage tissue engineering.
Collapse
|
19
|
Polydopamine-modified collagen sponge scaffold as a novel dermal regeneration template with sustained release of platelet-rich plasma to accelerate skin repair: A one-step strategy. Bioact Mater 2021; 6:2613-2628. [PMID: 33615046 PMCID: PMC7881170 DOI: 10.1016/j.bioactmat.2021.01.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Although employed to release growth factors (GFs) for regenerative medicine, platelet-rich plasma (PRP) has been hindered by issues like burst effect. Based on collagen sponge scaffolds (CSSs) modified with polydopamine (pDA), a novel dermal regeneration template (DRT) was designed. However, whether it could efficiently deliver PRP and even foster wound healing remained unclear. In this work, after PRP was prepared and pDA-modified CSSs (pDA-CSSs) were fabricated, microscopic observation, GFs release assay and in-vitro biological evaluations of pDA-CSSs with PRP (pDA-CSS@PRP) were performed, followed by BALA-C/nu mice full-thickness skin defects implanted with pDA-CSS@PRP covered by grafted skins (termed as a One-step strategy). As a result, scanning electron microscope demonstrated more immobilized platelets on pDA-CSS' surface with GFs' controlled release via enzyme-linked immunosorbent assay, compared with CSSs. In line with enhanced in-vitro proliferation, adhesion and migration of keratinocytes & endothelial cells, pDA-CSS@PRP were histologically revealed to accelerate wound healing with less scar via rapid angiogenesis, arrangement of more mature collagen, guiding cells to spread, etc. In conclusion, pDA-CSSs have potential to serve as a novel DRT capable of delivering PRP, which may foster full-thickness skin defect healing by means of a One-step strategy.
Collapse
|