1
|
Zhang R, Zhao X, Li J, Zhou D, Guo H, Li ZY, Li F. Programmable photoacoustic patterning of microparticles in air. Nat Commun 2024; 15:3250. [PMID: 38627385 PMCID: PMC11021490 DOI: 10.1038/s41467-024-47631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Optical and acoustic tweezers, despite operating on different physical principles, offer non-contact manipulation of microscopic and mesoscopic objects, making them essential in fields like cell biology, medicine, and nanotechnology. The advantages and limitations of optical and acoustic manipulation complement each other, particularly in terms of trapping size, force intensity, and flexibility. We use photoacoustic effects to generate localized Lamb wave fields capable of mapping arbitrary laser pattern shapes. By using localized Lamb waves to vibrate the surface of the multilayer membrane, we can pattern tens of thousands of microscopic particles into the desired pattern simultaneously. Moreover, by quickly and successively adjusting the laser shape, microparticles flow dynamically along the corresponding elastic wave fields, creating a frame-by-frame animation. Our approach merges the programmable adaptability of optical tweezers with the potent manipulation capabilities of acoustic waves, paving the way for wave-based manipulation techniques, such as microparticle assembly, biological synthesis, and microsystems.
Collapse
Affiliation(s)
- Ruoqin Zhang
- School of Physics and Optoelectronics, South China University of Technology, 510640, Guangzhou, China
- School of Physics, Beijing Institute of Technology, 100081, Beijing, China
| | - Xichuan Zhao
- College of Science, Minzu University of China, 100081, Beijing, China
| | - Jinzhi Li
- School of Physics, Beijing Institute of Technology, 100081, Beijing, China
| | - Di Zhou
- School of Physics, Beijing Institute of Technology, 100081, Beijing, China
| | - Honglian Guo
- College of Science, Minzu University of China, 100081, Beijing, China.
| | - Zhi-Yuan Li
- School of Physics and Optoelectronics, South China University of Technology, 510640, Guangzhou, China.
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, China.
| | - Feng Li
- School of Physics, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
2
|
Kvåle Løvmo M, Deng S, Moser S, Leitgeb R, Drexler W, Ritsch-Marte M. Ultrasound-induced reorientation for multi-angle optical coherence tomography. Nat Commun 2024; 15:2391. [PMID: 38493195 PMCID: PMC10944478 DOI: 10.1038/s41467-024-46506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Organoid and spheroid technology provide valuable insights into developmental biology and oncology. Optical coherence tomography (OCT) is a label-free technique that has emerged as an excellent tool for monitoring the structure and function of these samples. However, mature organoids are often too opaque for OCT. Access to multi-angle views is highly desirable to overcome this limitation, preferably with non-contact sample handling. To fulfil these requirements, we present an ultrasound-induced reorientation method for multi-angle-OCT, which employs a 3D-printed acoustic trap inserted into an OCT imaging system, to levitate and reorient zebrafish larvae and tumor spheroids in a controlled and reproducible manner. A model-based algorithm was developed for the physically consistent fusion of multi-angle data from a priori unknown angles. We demonstrate enhanced penetration depth in the joint 3D-recovery of reflectivity, attenuation, refractive index, and position registration for zebrafish larvae, creating an enabling tool for future applications in volumetric imaging.
Collapse
Affiliation(s)
- Mia Kvåle Løvmo
- Institute of Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Shiyu Deng
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Simon Moser
- Institute of Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Monika Ritsch-Marte
- Institute of Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Wang S, Zhang Z, Ma X, Yue Y, Li K, Meng Y, Wu Y. Bidirectional and Stepwise Rotation of Cells and Particles Using Induced Charge Electroosmosis Vortexes. BIOSENSORS 2024; 14:112. [PMID: 38534219 PMCID: PMC10968096 DOI: 10.3390/bios14030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/28/2024]
Abstract
The rotation of cells is of significant importance in various applications including bioimaging, biophysical analysis and microsurgery. Current methods usually require complicated fabrication processes. Herein, we proposed an induced charged electroosmosis (ICEO) based on a chip manipulation method for rotating cells. Under an AC electric field, symmetric ICEO flow microvortexes formed above the electrode surface can be used to trap and rotate cells. We have discussed the impact of ICEO and dielectrophoresis (DEP) under the experimental conditions. The capabilities of our method have been tested by investigating the precise rotation of yeast cells and K562 cells in a controllable manner. By adjusting the position of cells, the rotation direction can be changed based on the asymmetric ICEO microvortexes via applying a gate voltage to the gate electrode. Additionally, by applying a pulsed signal instead of a continuous signal, we can also precisely and flexibly rotate cells in a stepwise way. Our ICEO-based rotational manipulation method is an easy to use, biocompatible and low-cost technique, allowing rotation regardless of optical, magnetic or acoustic properties of the sample.
Collapse
Affiliation(s)
- Shaoxi Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
| | - Zhexin Zhang
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China
- Faculty of Science and Technology, University of Macau, Macau, China
| | - Xun Ma
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
| | - Yuanbo Yue
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
| | - Kemu Li
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
| | - Yingqi Meng
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
| | - Yupan Wu
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
- Research & Development Institute, Northwestern Polytechnical University, Shenzhen 518000, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang 215400, China
| |
Collapse
|
4
|
Sun J, Yang B, Koukourakis N, Guck J, Czarske JW. AI-driven projection tomography with multicore fibre-optic cell rotation. Nat Commun 2024; 15:147. [PMID: 38167247 PMCID: PMC10762230 DOI: 10.1038/s41467-023-44280-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Optical tomography has emerged as a non-invasive imaging method, providing three-dimensional insights into subcellular structures and thereby enabling a deeper understanding of cellular functions, interactions, and processes. Conventional optical tomography methods are constrained by a limited illumination scanning range, leading to anisotropic resolution and incomplete imaging of cellular structures. To overcome this problem, we employ a compact multi-core fibre-optic cell rotator system that facilitates precise optical manipulation of cells within a microfluidic chip, achieving full-angle projection tomography with isotropic resolution. Moreover, we demonstrate an AI-driven tomographic reconstruction workflow, which can be a paradigm shift from conventional computational methods, often demanding manual processing, to a fully autonomous process. The performance of the proposed cell rotation tomography approach is validated through the three-dimensional reconstruction of cell phantoms and HL60 human cancer cells. The versatility of this learning-based tomographic reconstruction workflow paves the way for its broad application across diverse tomographic imaging modalities, including but not limited to flow cytometry tomography and acoustic rotation tomography. Therefore, this AI-driven approach can propel advancements in cell biology, aiding in the inception of pioneering therapeutics, and augmenting early-stage cancer diagnostics.
Collapse
Affiliation(s)
- Jiawei Sun
- Shanghai Artificial Intelligence Laboratory, Longwen Road 129, Xuhui District, 200232, Shanghai, China.
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Dresden, Germany.
| | - Bin Yang
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Dresden, Germany
| | - Nektarios Koukourakis
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Dresden, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Juergen W Czarske
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Dresden, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Institute of Applied Physics, TU Dresden, Dresden, Germany.
| |
Collapse
|
5
|
Cao HX, Nguyen VD, Jung D, Choi E, Kim CS, Park JO, Kang B. Acoustically Driven Cell-Based Microrobots for Targeted Tumor Therapy. Pharmaceutics 2022; 14:pharmaceutics14102143. [PMID: 36297578 PMCID: PMC9609374 DOI: 10.3390/pharmaceutics14102143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Targeted drug delivery using microrobots manipulated by an external actuator has significant potential to be a practical approach for wireless delivery of therapeutic agents to the targeted tumor. This work aimed to develop a novel acoustic manipulation system and macrophage-based microrobots (Macbots) for a study in targeted tumor therapy. The Macbots containing superparamagnetic iron oxide nanoparticles (SPIONs) can serve as drug carriers. Under an acoustic field, a microrobot cluster of the Macbots is manipulated by following a predefined trajectory and can reach the target with a different contact angle. As a fundamental validation, we investigated an in vitro experiment for targeted tumor therapy. The microrobot cluster could be manipulated to any point in the 4 × 4 × 4 mm region of interest with a position error of less than 300 μm. Furthermore, the microrobot could rotate in the O-XY plane with an angle step of 45 degrees without limitation of total angle. Finally, we verified that the Macbots could penetrate a 3D tumor spheroid that mimics an in vivo solid tumor. The outcome of this study suggests that the Macbots manipulated by acoustic actuators have potential applications for targeted tumor therapy.
Collapse
Affiliation(s)
- Hiep Xuan Cao
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea
| | - Van Du Nguyen
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea
| | - Daewon Jung
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea
| | - Chang-Sei Kim
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (C.-S.K.); (J.-O.P.); (B.K.)
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea
- Correspondence: (C.-S.K.); (J.-O.P.); (B.K.)
| | - Byungjeon Kang
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea
- College of AI Convergence, Chonnam National University, Gwangju 61186, Korea
- Graduate School of Data Science, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (C.-S.K.); (J.-O.P.); (B.K.)
| |
Collapse
|
6
|
Wu H, Dang D, Yang X, Wang J, Qi R, Yang W, Liang W. Accurate and Automatic Extraction of Cell Self-Rotation Speed in an ODEP Field Using an Area Change Algorithm. MICROMACHINES 2022; 13:mi13060818. [PMID: 35744432 PMCID: PMC9229272 DOI: 10.3390/mi13060818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022]
Abstract
Cells are complex biological units that can sense physicochemical stimuli from their surroundings and respond positively to them through characterization of the cell behavior. Thus, understanding the motions of cells is important for investigating their intrinsic properties and reflecting their various states. Computer-vision-based methods for elucidating cell behavior offer a novel approach to accurately extract cell motions. Here, we propose an algorithm based on area change to automatically extract the self-rotation of cells in an optically induced dielectrophoresis field. To obtain a clear and complete outline of the cell structure, dark corner removal and contrast stretching techniques are used in the pre-processing stage. The self-rotation speed is calculated by determining the frequency of the cell area changes in all of the captured images. The algorithm is suitable for calculating in-plane and out-of-plane rotations, while addressing the problem of identical images at different rotation angles when dealing with rotations of spherical and flat cells. In addition, the algorithm can be used to determine the motion trajectory of cells. The experimental results show that the algorithm can efficiently and accurately calculate cell rotation speeds of up to ~155 rpm. Potential applications of the proposed algorithm include cell morphology extraction, cell classification, and characterization of the cell mechanical properties. The algorithm can be very helpful for those who are interested in using computer vision and artificial-intelligence-based ideology in single-cell studies, drug treatment, and other bio-related fields.
Collapse
Affiliation(s)
- Haiyang Wu
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (H.W.); (X.Y.); (J.W.)
| | - Dan Dang
- School of Science, Shenyang Jianzhu University, Shenyang 110168, China
- Correspondence: (D.D.); (R.Q.); (W.L.)
| | - Xieliu Yang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (H.W.); (X.Y.); (J.W.)
| | - Junhai Wang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (H.W.); (X.Y.); (J.W.)
| | - Ruolong Qi
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (H.W.); (X.Y.); (J.W.)
- Correspondence: (D.D.); (R.Q.); (W.L.)
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China;
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (H.W.); (X.Y.); (J.W.)
- Correspondence: (D.D.); (R.Q.); (W.L.)
| |
Collapse
|
7
|
Läubli NF, Gerlt MS, Wüthrich A, Lewis RTM, Shamsudhin N, Kutay U, Ahmed D, Dual J, Nelson BJ. Embedded Microbubbles for Acoustic Manipulation of Single Cells and Microfluidic Applications. Anal Chem 2021; 93:9760-9770. [PMID: 34228921 PMCID: PMC8295982 DOI: 10.1021/acs.analchem.1c01209] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022]
Abstract
Acoustically excited microstructures have demonstrated significant potential for small-scale biomedical applications by overcoming major microfluidic limitations. Recently, the application of oscillating microbubbles has demonstrated their superiority over acoustically excited solid structures due to their enhanced acoustic streaming at low input power. However, their limited temporal stability hinders their direct applicability for industrial or clinical purposes. Here, we introduce the embedded microbubble, a novel acoustofluidic design based on the combination of solid structures (poly(dimethylsiloxane)) and microbubbles (air-filled cavity) to combine the benefits of both approaches while minimizing their drawbacks. We investigate the influence of various design parameters and geometrical features through numerical simulations and experimentally evaluate their manipulation capabilities. Finally, we demonstrate the capabilities of our design for microfluidic applications by investigating its mixing performance as well as through the controlled rotational manipulation of individual HeLa cells.
Collapse
Affiliation(s)
- Nino F. Läubli
- Department
of Mechanical and Process Engineering, ETH Zurich, Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
- Molecular
Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, United Kingdom
| | - Michael S. Gerlt
- Department
of Mechanical and Process Engineering, ETH Zurich, Mechanics and Experimental Dynamics, Institute of Mechanical Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
| | - Alexander Wüthrich
- Department
of Mechanical and Process Engineering, ETH Zurich, Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
| | - Renard T. M. Lewis
- Department
of Biology, ETH Zurich, Institute of Biochemistry, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Naveen Shamsudhin
- Department
of Mechanical and Process Engineering, ETH Zurich, Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
| | - Ulrike Kutay
- Department
of Biology, ETH Zurich, Institute of Biochemistry, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Daniel Ahmed
- Department
of Mechanical and Process Engineering, ETH Zurich, Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
- Department
of Mechanical and Process Engineering, ETH Zurich, Acoustic Robotics Systems Lab, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Jürg Dual
- Department
of Mechanical and Process Engineering, ETH Zurich, Mechanics and Experimental Dynamics, Institute of Mechanical Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
| | - Bradley J. Nelson
- Department
of Mechanical and Process Engineering, ETH Zurich, Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
| |
Collapse
|