1
|
Grafted dinuclear zinc complexes for selective recognition of phosphatidylserine: Application to the capture of extracellular membrane microvesicles. J Inorg Biochem 2023; 239:112065. [PMID: 36403435 DOI: 10.1016/j.jinorgbio.2022.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
Microvesicles (MVs) are key markers in human body fluids that reflect cellular activation related to diseases as thrombosis. These MVs display phosphatidylserine at the outer leaflet of their plasma membrane as specific recognition moieties. The work reported in this manuscript focuses on the development of an original method where MVs are captured by bimetallic zinc complexes. A set of ligands have been synthetized based on a phenol spacer bearing in para position an amine group appended to a short or a longer alkyl chain (for grafting on surface) and bis(dipicolylamine) arms in ortho position (for zinc coordination). The corresponding dibridged zinc phenoxido and hydroxido complexes have been prepared in acetronitrile in presence of triethylamine and characterized by several spectroscopic techniques. The pH-driven interconversion studies for both complexes in H2O:DMSO (70:30) evidence that at physiologic pH the main species are mono-bridged by the phenoxido spacer. An X-Ray structure obtained from complex 2 (based on the ligand with the amine group on the short chain) in aqueous medium confirms the presence of a mono-bridged complex. Then, the complexes have been used for interaction studies with short-chain phospholipids. Both have established the selective recognition of the anionic phosphatidylserine model versus zwitterionic phospholipids (in solution by 31P NMR and after immobilization on solid support by surface plasmon resonance (SPR)). Moreover, both complexes have also demonstrated their ability to capture MVs isolated from human plasma. These complexes are thus promising candidates for MVs probing by a new approach based on coordination chemistry.
Collapse
|
2
|
Pons M, Perenon M, Bonnet H, Gillon E, Vallée C, Coche-Guérente L, Defrancq E, Spinelli N, Van der Heyden A, Dejeu J. Conformational transition in SPR experiments: impact of spacer length, immobilization mode and aptamer density on signal sign and amplitude. Analyst 2022; 147:4197-4205. [DOI: 10.1039/d2an00824f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The spacer length and immobilization mode impact the Surface plasmon resonance (SPR) signal and affinity measured for small target/aptamer recognition. The signal could be positive, negative or null explained by refractive index increment deviation.
Collapse
Affiliation(s)
- Marina Pons
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, F-38000 Grenoble, France
| | - Marine Perenon
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, F-38000 Grenoble, France
| | - Hugues Bonnet
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, F-38000 Grenoble, France
| | - Emilie Gillon
- Univ. Grenoble Alpes, CERMAV-CNRS, 601 rue de la chimie, F-38610 Gières, France
| | - Celio Vallée
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, F-38000 Grenoble, France
| | | | - Eric Defrancq
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, F-38000 Grenoble, France
| | - Nicolas Spinelli
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, F-38000 Grenoble, France
| | | | - Jérôme Dejeu
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, F-38000 Grenoble, France
- FEMTO-ST Institute, CNRS UMR-6174, Université de Bourgogne Franche-Comté, F-25000 Besançon, France
| |
Collapse
|
3
|
Shah N, Hussain M, Rehan T, Khan A, Khan ZU. Overview of polyethylene glycol-based materials with a special focus on core-shell particles for drug delivery application. Curr Pharm Des 2021; 28:352-367. [PMID: 34514984 DOI: 10.2174/1381612827666210910104333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/10/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022]
Abstract
Polyethylene glycols (PEG) are water-soluble nonionic polymeric molecules. PEG and PEG-based materials are used for various important applications such as solvents, adhesives, adsorbents, drug delivery agents, tissue engineering scaffolds, etc. The coating of nanoparticles with PEG forms core-shell nanoparticles. The PEG-based core-shell nanoparticles are synthesized for the development of high-quality drug delivery systems. In the present review, we first explained the basics and various applications of PEGs and PEG-based composites materials and then concentrated on the PEG-based core-shell nanoparticles for biomedical applications specifically their use in drug delivery.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| | - Manzoor Hussain
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| | - Touseef Rehan
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, KP 45000. Pakistan
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| | - Zubair Ullah Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| |
Collapse
|