1
|
Ghosh S, Katiyar JD, Chattopadhyay S. Stimuli-directed selective detection of Cu 2+ and Cr 2O 72- ions using a pH-responsive chitosan-poly(aminoamide) fluorescent microgel in aqueous media. SOFT MATTER 2023; 20:79-88. [PMID: 37999681 DOI: 10.1039/d3sm01319g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
In this work, the preparation of a pH-responsive fluorescent microgel, (NANO-PAMAM-CHT), is presented for the selective detection of Cu2+ and Cr2O72- ions. The NANO-PAMAM-CHT (nanosized polyaminoamide-chitosan microgel) is synthesized via aza-Michael addition reactions in a controlled and stepwise manner in water, using easily affordable starting materials like 1,4-diaminobutane, N,N'-methylene-bis-acrylamide, NIPAM and chitosan. NANO-PAMAM-CHT shows pH-responsive fluorescent properties, whereas the fluorescence intensity shows a pH-responsive change. Due to the selective fluorescence quenching, the microgel can detect both Cu2+ ions and Cr2O72- ions selectively at ambient pH in aqueous medium. Moreover, it can selectively differentiate between Cu2+ ion and Cr2O72- ions at pH ∼3 in water. The limits of detection for Cu2+ ions and Cr2O72- ions are reported as 16.9 μM and 2.62 μM, respectively (lower than the minimum allowed level in drinking water) at pH ∼7. Mechanistic study further reveals the dynamic quenching phenomenon in the presence of Cu2+ ions and static quenching in the presence of Cr2O72- ions.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801106, Bihar, India.
| | - Jyoti Devi Katiyar
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801106, Bihar, India.
| | - Subrata Chattopadhyay
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801106, Bihar, India.
| |
Collapse
|
2
|
Daga P, Manna P, Majee P, Singha DK, Hui S, Ghosh AK, Mahata P, Mondal SK. Response of a Zn(II)-based metal-organic coordination polymer towards trivalent metal ions (Al 3+, Fe 3+ and Cr 3+) probed by spectroscopic methods. Dalton Trans 2021; 50:7388-7399. [PMID: 33969864 DOI: 10.1039/d1dt00729g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new zinc-based two-dimensional coordination polymer, [Zn(5-AIP)(Ald-4)]·H2O (5-AIP = 5-amino isophthalate, Ald-4 = aldrithiol-4), 1, has been synthesized at room temperature by the layer diffusion technique. Single-crystal X-ray diffraction analysis of 1 showed a two-dimensional bilayer structure. An aqueous suspension of 1 upon excitation at 300 nm displayed an intense blue emission at 403 nm. The luminescence spectra were interestingly responsive and selective to Al3+, Cr3+ and Fe3+ ions even in the presence of other interfering ions. The calculated detection limits for Al3+, Cr3+ and Fe3+ were 0.35 μM ([triple bond, length as m-dash]8.43 ppb), 0.46 μM ([triple bond, length as m-dash]22.6 ppb) and 0.30 μM ([triple bond, length as m-dash]15.85 ppb), respectively. Notably, with the cumulative addition of Al3+ ions, the luminescence intensity at 403 nm decreased steadily with a gradual red shift up to 427 nm. Afterward, this red shifted peak showed a turn-on effect upon further addition of Al3+ ions. On the other hand, for Cr3+ and Fe3+ ions, there was only drastic luminescence quenching and a large red shift up to 434 nm. This indicated the formation of a complex between 1 and these metal ions, which was also supported by the UV-Visible absorption spectra of 1 that showed the appearance of a new band at 280 nm in the presence of these three metal ions. The FTIR spectra revealed that these ions interacted with the carboxylate oxygen atom of 5-AIP and the nitrogen atom of the Ald-4 ligand in the structure. The luminescence lifetime decay analysis manifested that a charge-transfer type complex was formed between 1 and Cr3+ and Fe3+ ions that resulted in huge luminescence quenching due to the efficient charge transfer involving the vacant d-orbitals, whereas for Al3+ ions having no vacant d-orbital, turn-on of luminescence occurred because of the increased rigidity of 1 upon complexation.
Collapse
Affiliation(s)
- Pooja Daga
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India.
| | - Priyanka Manna
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.
| | - Prakash Majee
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India.
| | - Debal Kanti Singha
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India. and Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.
| | - Sayani Hui
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.
| | - Ananta Kumar Ghosh
- Department of Chemistry, Burdwan Raj College, Burdwan, Burdwan-713104, West Bengal, India
| | - Partha Mahata
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.
| | - Sudip Kumar Mondal
- Department of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India.
| |
Collapse
|
4
|
Majee P, Singha DK, Daga P, Hui S, Mahata P, Mondal SK. Photophysical studies of a room temperature phosphorescent Cd( ii) based MOF and its application towards ratiometric detection of Hg 2+ ions in water. CrystEngComm 2021. [DOI: 10.1039/d1ce00333j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A cadmium based MOF showed room temperature phosphorescence and interacted very selectively with Hg2+ ions. The phosphorescence emission at 520 nm gradually disappeared while low intensity fluorescence at 383 nm gradually increased.
Collapse
Affiliation(s)
- Prakash Majee
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Debal Kanti Singha
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Pooja Daga
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Sayani Hui
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Partha Mahata
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Sudip Kumar Mondal
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| |
Collapse
|
5
|
Majee P, Daga P, Singha DK, Saha D, Mahata P, Mondal SK. A lanthanide doped metal-organic framework demonstrated as naked eye detector of a trace of water in organic solvents including alcohols by monitoring the turn-on of luminescence. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|