1
|
Cyniak J, Kasprzak A. Mechanochemical Synthesis of Molecular Chemoreceptors. ACS OMEGA 2024; 9:48870-48883. [PMID: 39713627 PMCID: PMC11656220 DOI: 10.1021/acsomega.4c06566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
The design of environmentally friendly methods for synthesizing molecular receptors is an expanding area within applied organic chemistry. This work systematically summarizes advances in the mechanochemical synthesis of molecular chemoreceptors. It discusses key achievements related to the synthesis of chemoreceptors containing azine, Schiff base, thiosemicarbazone, hydrazone, rhodamine 6G, imide, or amide moieties. Additionally, it highlights the application potential of mechanochemically synthesized molecular chemoreceptors in the recognition of ions and small molecules, along with a discussion of the mechanisms of detection processes.
Collapse
Affiliation(s)
- Jakub
S. Cyniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| |
Collapse
|
2
|
Chang R, Chen CY, Gao L, Li Y, Lee ZH, Zhao H, Sue ACH, Chang KC. Highly selective Cu 2+ detection with a naphthalimide-functionalised pillar[5]arene fluorescent chemosensor. Org Biomol Chem 2024; 22:745-752. [PMID: 37982316 DOI: 10.1039/d3ob01558k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Ligand 1, a rim-differentiated pillar[5]arene macrocycle modified with five naphthalimide groups through click chemistry, serves as an effective ratiometric fluorescent chemosensor for Cu2+. In contrast to the monomeric naphthalimide control compound 2, which shows only monomer emission, ligand 1 demonstrates dual emission characteristics encompassing both the monomer and excimer of the naphthalimide moieties. The binding properties of ligand 1 toward 15 different metal ions were systematically investigated in CH2Cl2/CH3CN (v/v, 1 : 1) by UV-vis and fluorescence spectroscopy. Remarkably, ligand 1 exhibits exceptional selectivity for Cu2+ ions. Upon complexation with Cu2+, the excimer emission of ligand 1 diminishes, concomitant with an enhancement of its monomer emission. The binding ratio for 1·Cu2+ was determined to be 1 : 1, with an association constant of (3.39 ± 0.40) × 105 M-1 calculated using a nonlinear least-squares curve-fitting method. Furthermore, the limit of detection (LOD) was found to be 185 ± 7 nM. Our results from 1H NMR titration, high-resolution mass spectrometry analysis and density functional theory calculations of 1·Cu2+ suggest synergistic coordination between Cu2+ and the triazole groups on ligand 1.
Collapse
Affiliation(s)
- Rong Chang
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Chan-Yu Chen
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| | - Liya Gao
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Rd, Nankai District, Tianjin 300072, P. R. China
| | - Yana Li
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Zui-Harng Lee
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| | - Hongxia Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Rd, Nankai District, Tianjin 300072, P. R. China
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Rd, Siming District, Xiamen, Fujian Province 361005, P. R. China
| | - Kai-Chi Chang
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan, Republic of China.
| |
Collapse
|
3
|
Xiao Y, Li H, Tu M, Sun L, Wang F. Novel AIEE pillar[5]arene-fluorene fluorescent copolymer for selective recognition of paraquat by forming polypseudorotaxane. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123112. [PMID: 37478758 DOI: 10.1016/j.saa.2023.123112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023]
Abstract
A novel conjugated polymer (Co-P[5]Flu) was synthesized by copolymerizing a difunctionalized pillar[5]arene and a fluorene derivative monomer. Co-P[5]Flu displayed an aggregation-induced emission enhancement (AIEE) effect because of the restricted intramolecular rotations of the pillar[5]arene unit. Co-P[5]Flu exhibited high selectivity and sensitivity towards the pesticide paraquat (PQ) with excellent anti-interference properties. It presented fluorescence quenching response (1-I/I0=96.6%) only towards paraquat and not towards other competitive guests. The fluorescence titration experiments revealed that the detection limit (LOD) for paraquat was as low as 1.69×10-8 M, and the Stern-Volmer constant (KSV) was determined to be 2.11×104 M-1. The recognition mechanism was studied using both 1H NMR titration and theoretical calculations. The Co-P[5]Flu showed fluorescence quenching for PQ due to the synergistic effect of polypseudorotaxane formation and photoinduced electron transfer (PET). Additionally, the polymer chemosensor demonstrated potential for the detection of paraquat in practical samples.
Collapse
Affiliation(s)
- Yu Xiao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Hui Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Man Tu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Lei Sun
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Feng Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| |
Collapse
|
4
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|
5
|
Zhang Y, Tang F, He X, Wang C, Kong L, Yang J, Ding A. Imidazole-based AIEgens for highly sensitive and selective detection of picric acid. CrystEngComm 2022. [DOI: 10.1039/d2ce00953f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of imidazole-based AIEgens has been synthesized as fluorescent probes for specific recognition of picric acids over a variety of nitroaromatic compounds in aqueous media with high sensitivity.
Collapse
Affiliation(s)
- Yuzhu Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei, 230061, PR China
| | - Fang Tang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, PR China
| | - Xuan He
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei, 230061, PR China
| | - Chengyuan Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei, 230061, PR China
| | - Lin Kong
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei, 230061, PR China
| | - Jiaxiang Yang
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei, 230061, PR China
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, PR China
| |
Collapse
|
6
|
Kan XT, Yao H, Niu YB, Hu YP, Zhang YM, Wei TB, Lin Q. Regulation of conjugate rigid plane structures for achieving transformation of fluorescence recognition properties. NEW J CHEM 2022. [DOI: 10.1039/d1nj05911d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Regulation of a conjugate rigid plane structure based on bisbenzimidazole derivatives to research the structure-effective relationship between conjugate systems size and fluorescence sensing properties.
Collapse
Affiliation(s)
- Xiao-Tong Kan
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Hong Yao
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Yan-Bing Niu
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Yin-Ping Hu
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - You-Ming Zhang
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
- Deputy Director-General of Gansu Natural Energy Research Institute, Renmin Road 23, Lanzhou, Gansu, 730070, P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Qi Lin
- Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| |
Collapse
|
7
|
Bardasov IN, Alekseeva AU, Ershova AI, Ershov OV. An approach to the synthesis of α-cyanostilbazole derivatives based on the heterocyclization of tetracyanopropenides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Chen ZZ, Li RY, Zhang WZ, Zhang Y, Dong WK. A new salamo-based colorimetric and fluorescent turn-on sensor with aggregation-induced emission for the rapid and highly sensitive detection of cyanide in real samples. NEW J CHEM 2020. [DOI: 10.1039/d0nj05020b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new, simple, and easy-to-manufacture highly selective and sensitive dual-mode sensor A1 with the aggregation-induced emission properties is used for CN− colorimetric and fluorescence detection.
Collapse
Affiliation(s)
- Zhuang-Zhuang Chen
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- P. R. China
| | - Ruo-Yu Li
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- P. R. China
| | - Wen-Ze Zhang
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- P. R. China
| | - Yang Zhang
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- P. R. China
| | - Wen-Kui Dong
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- P. R. China
| |
Collapse
|