1
|
Reversible colorimetric and NIR fluorescent probe for sensing SO 2/H 2O 2 in living cells and food samples. Food Chem 2023; 407:135031. [PMID: 36473352 DOI: 10.1016/j.foodchem.2022.135031] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Preservative sulfur dioxide (SO2) and bleach hydrogen peroxide (H2O2) were widely used in the food industry, at the same time, they were also a redox pair in biological systems. Therefore, the reversible sensing SO2/H2O2 was of great significance in food safety and biology. In this paper, a colorimetric and NIR fluorescent dual channels response probe (DCA-Bba) for SO2/H2O2 based on chromene-barbiturate was developed. DCA-Bba exhibited a rapid and sensitive recognition of SO2, and the adduct DCA-Bba-HSO3- could detect H2O2 in PBS (with 10 % DMSO, v/v, pH 7.4) solution. The reversible response of DCA-Bba was implemented by HSO3- involved 1,4-addition and H2O2 induced elimination reaction. DCA-Bba showed a strong red fluorescence based on the intramolecular charge transfer (ICT) process, after the recognition of SO2, the fluorescence of the adduct was quenched based on the photoinduced electron transfer (PET) process. And importantly, DCA-Bba had been applied for imaging SO2/H2O2 redox cycles in living cells, as well as could detect the levels of SO2 in white sugar, biscuit, Chinese liquor and red wine samples.
Collapse
|
2
|
Feng T, Song X, Du Y, Bai Y, Ren X, Ma H, Wu D, Li Y, Wei Q. High-Efficiency CdSe Quantum Dots/Fe 3O 4@MoS 2/S 2O 82- Electrochemiluminescence System Based on a Microfluidic Analysis Platform for the Sensitive Detection of Neuron-Specific Enolase. Anal Chem 2022; 94:9176-9183. [PMID: 35709535 DOI: 10.1021/acs.analchem.2c01868] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, based on electrochemiluminescence (ECL) technology and self-assembled portable disease detection chips, a bioactivity-maintained sensing platform was developed for the quantitative detection of neuron-specific enolase. First, we prepared Fe3O4@MoS2 nanocomposites as an efficient catalyst to accelerate the reduction of persulfate (S2O82-). Specifically, abundant sulfate radicals (SO4•-) were generated because of cyclic conversion between Fe2+ and Fe3+. Meanwhile, MoS2 nanoflowers with a high specific surface area could not only load more Fe3O4 but also solve its agglomeration problem, which greatly improved the catalytic efficiency. Moreover, a biosensor chip was constructed by standard lithography processes for disease detection, which had good sensitivity and portability. According to the above strategies, the developed portable sensing platform played the part of promoting the practical application of bioanalysis in early tumor screening and clinical diagnosis. In addition, we developed a short peptide ligand (NARKFYKG, NAR) to avoid the occupation of antigen binding sites by specifically connecting to Fc fragments in antibodies. Thus, the binding efficiency of antibodies and the activity of biosensors were improved due to the introduction of NAR.
Collapse
Affiliation(s)
- Tao Feng
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xianzhen Song
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Yu Bai
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - HongMin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - YuYang Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China.,Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Enzyme Encapsulation by Facile Self-Assembly Silica-Modified Magnetic Nanoparticles for Glucose Monitoring in Urine. Pharmaceutics 2022; 14:pharmaceutics14061154. [PMID: 35745727 PMCID: PMC9227432 DOI: 10.3390/pharmaceutics14061154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Silica nanoparticles hold tremendous potential for the encapsulation of enzymes. However, aqueous alcohol solutions and catalysts are prerequisites for the production of silica nanoparticles, which are too harsh for maintaining the enzyme activity. Herein, a procedure without any organic solvents and catalysts (acidic or alkaline) is developed for the synthesis of silica-encapsulated glucose-oxidase-coated magnetic nanoparticles by a facile self-assembly route, avoiding damage of the enzyme structure in the reaction system. The encapsulated enzyme was characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive spectrometry, and a vibrating sample magnetometer. Finally, a colorimetric sensing method was developed for the detection of glucose in urine samples based on the encapsulated glucose oxidase and a hydrogen peroxide test strip. The method exhibited a good linear performance in the concentration range of 20~160 μg mL−1 and good recoveries ranging from 94.3 to 118.0%. This work proves that the self-assembly method could be employed to encapsulate glucose oxidase into silica-coated magnetic particles. The developed colorimetric sensing method shows high sensitivity, which will provide a promising tool for the detection of glucose and the monitoring of diabetes.
Collapse
|
4
|
Hu Q, Chen G, Wang L, Cui X, Chang C, Fu Q. Nanoreactor of sarcosine oxidase-embedded ZIFs activates fluorescent response for diagnosis of prostate cancer. NEW J CHEM 2022. [DOI: 10.1039/d1nj06169k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorometric method was developed to detect sarcosine based on SOX@ZIF-8, which possessed great linearity, specificity, and easy operation.
Collapse
Affiliation(s)
- Qianqian Hu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Medical University, Xi’an 710038, China
| | - Guoning Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Lu Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xia Cui
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Chun Chang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Qiang Fu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Pharmaceutical Analysis, College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
5
|
Hu Q, Chen G, Han J, Wang L, Cui X, Wang P, Chang C, Fu Q. Determination of sarcosine based on magnetic cross-linked enzyme aggregates for diagnosis of prostate cancer. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|