1
|
Aladeemy SA, Arunachalam P, Amer MS, Al-Mayouf AM. Electrochemically embedded heterostructured Ni/NiS anchored onto carbon paper as bifunctional electrocatalysts for urea oxidation and hydrogen evolution reaction. RSC Adv 2025; 15:14-25. [PMID: 39758907 PMCID: PMC11698127 DOI: 10.1039/d4ra07418a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025] Open
Abstract
Developing high-efficiency, cost-effective, and long-term stable nanostructured catalysts for electrocatalytic water splitting remains one of the most challenging aspects of hydrogen fuel production. Urea electrooxidation reaction (UOR) can produce hydrogen energy from nitrogen-rich wastewater, making it a more sustainable and cheaper source of hydrogen. In this study, we have developed Ni/NiS hybrid structures with cauliflower-like morphology on carbon paper electrodes through the application of dimethylsulfoxide solvents. These electrodes serve as highly efficient and long-lasting electrocatalysts for the hydrogen evolution reactions (HER) and UOR. In particular, the Ni/NiS cauliflower-like morphology is confirmed via X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Furthermore, electrochemical characterization of the Ni/NiS@CP catalyst showed a 1.35 V onset potential versus RHE for the UOR in 1.0 M KOH and superior electrocatalytic performance compared to bare Ni@CP. Additionally, the Ni/NiS@CP catalyst also exhibits a low overpotential of 125 mV at 10 mA cm-2 for HER in 0.5 M H2SO4 with excellent durability, which is apparently lower than bare Ni@/CP (397 mV). Based on the results obtained, the synthesized Ni/NiS@CP catalyst may be a promising electrode candidate for handling urea-rich wastewater and generating hydrogen.
Collapse
Affiliation(s)
- Saba A Aladeemy
- Electrochemical Sciences Research Chair (ESRC), Chemistry Department, King Saud University P.O Box 2455 Riyadh 11451 Saudi Arabia
| | - Prabhakarn Arunachalam
- Electrochemical Sciences Research Chair (ESRC), Chemistry Department, King Saud University P.O Box 2455 Riyadh 11451 Saudi Arabia
| | - Mabrook S Amer
- Electrochemical Sciences Research Chair (ESRC), Chemistry Department, King Saud University P.O Box 2455 Riyadh 11451 Saudi Arabia
| | - Abdullah M Al-Mayouf
- Electrochemical Sciences Research Chair (ESRC), Chemistry Department, King Saud University P.O Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
2
|
Lakhan MN, Hanan A, Hussain A, Ali Soomro I, Wang Y, Ahmed M, Aftab U, Sun H, Arandiyan H. Transition metal-based electrocatalysts for alkaline overall water splitting: advancements, challenges, and perspectives. Chem Commun (Camb) 2024; 60:5104-5135. [PMID: 38625567 DOI: 10.1039/d3cc06015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Water electrolysis is a promising method for efficiently producing hydrogen and oxygen, crucial for renewable energy conversion and fuel cell technologies. The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are two key electrocatalytic reactions occurring during water splitting, necessitating the development of active, stable, and low-cost electrocatalysts. Transition metal (TM)-based electrocatalysts, spanning noble metals and TM oxides, phosphides, nitrides, carbides, borides, chalcogenides, and dichalcogenides, have garnered significant attention due to their outstanding characteristics, including high electronic conductivity, tunable valence electron configuration, high stability, and cost-effectiveness. This timely review discusses developments in TM-based electrocatalysts for the HER and OER in alkaline media in the last 10 years, revealing that the exposure of more accessible surface-active sites, specific electronic effects, and string effects are essential for the development of efficient electrocatalysts towards electrochemical water splitting application. This comprehensive review serves as a guide for designing and constructing state-of-the-art, high-performance bifunctional electrocatalysts based on TMs, particularly for applications in water splitting.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Abdul Hanan
- Sunway Center for Electrochemical Energy and Sustainable Technology, SCEEST, Sunway University, Bandar Sunway, Malaysia
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Irfan Ali Soomro
- Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, P. R. China
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Mukhtiar Ahmed
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Umair Aftab
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan.
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, 066004 Qinhuangdao, P. R. China
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia.
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Li SS, Liu YS, Wu XY, Wang KX, Chen JS. Tailoring the Growth and Morphology of Lithium Peroxide: Nickel Sulfide/Nickel Phosphate Nanotubes with Optimized Electronic Structure for Lithium-Oxygen Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304435. [PMID: 37642532 DOI: 10.1002/smll.202304435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/27/2023] [Indexed: 08/31/2023]
Abstract
Heterogeneous crystalline-amorphous structures, with tunable electronic structures and morphology, hold immense promise as catalysts for lithium-oxygen batteries (LOBs). Herein, a nanotube network constructed by crystalline nickel sulfide/amorphous nickel phosphate (NiS/NiPO) heterostructure is prepared on Ni foam through the sulfurization of the precursor generated hydrothermally. Used as cathodes, the NiS/NiPO nanotubes with optimized electronic structure can induce the deposition of the highly porous and interconnected structure of Li2 O2 with rich Li2 O2 -electrolyte interfaces. Abundant active sites can be created on NiS/NiPO through the charge redistribution for the uniform nucleation and growth of Li2 O2 . Moreover, nanotube networks endow cathodes with efficient transport channels and sufficient space for the accommodation of Li2 O2 . A high discharge capacity of 27 003.6 mAh g-1 and a low charge overpotential of 0.58 V at 1000 mAh g-1 can be achieved at 200 mA g-1 . This work provides valuable insight into the unique role of the electronic structure and morphology of catalysts in the formation mechanisms of Li2 O2 and the performances of LOBs.
Collapse
Affiliation(s)
- Se-Si Li
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yu-Si Liu
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xue-Yan Wu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kai-Xue Wang
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jie-Sheng Chen
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
Li SS, Zhao XH, Wang KX, Chen JS. Tailoring the growth route of lithium peroxide through the rational design of a sodium-doped nickel phosphate catalyst for lithium-oxygen batteries. Chem Commun (Camb) 2023; 59:11839-11842. [PMID: 37712201 DOI: 10.1039/d3cc03323f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Tailoring the morphology and structure of Li2O2, the discharge product of lithium-oxygen batteries (LOBs), through the rational design of cathode catalysts is an efficient strategy to promote the electrochemical performance of LOBs. In this work, sodium-doped nickel phosphate nanorods (Na-NiPO NRs) grown on Ni foam (NF) were prepared by the hydrothermal method and subsequent calcination. For the Na-NiPO NRs, the electronic structure could be optimized and abundant void space among the nanorods would provide abundant transport channels. Adopted as the cathodes, the Na-NiPO NRs could facilitate the uniform growth of sea cucumber-like Li2O2 with sufficient Li2O2-electrolyte and Li2O2-catalyst interfaces, significantly promoting the charge process. Therefore, LOBs could deliver a high discharge capacity of 10365.0 mA h g-1 at 100 mA g-1. And a low potential gap of 1.16 V can be achieved at 200 mA g-1 with a capacity of 500 mA h g-1. The proposed strategy demonstrates the role of the morphology and electronic structure of the cathode catalysts in tuning the Li2O2 morphology and provides a novel approach for achieving high-performance LOBs.
Collapse
Affiliation(s)
- Se-Si Li
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xing-He Zhao
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Kai-Xue Wang
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Jie-Sheng Chen
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
5
|
Electrodeposition of nanoporous Ni0.85Se arrays anchored on rGO promotes high-efficiency oxygen evolution reaction. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
6
|
Novel rGO@Fe3O4 nanostructures: An active electrocatalyst for hydrogen evolution reaction in alkaline media. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
The Heterojunction of Ni and Co9S8 was Synthesized and Anchored on Carbon Nanotubes to Improve the Performance of Water Electrolysis. Catal Letters 2022. [DOI: 10.1007/s10562-021-03720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
MOF-Derived Ultrathin Cobalt Molybdenum Phosphide Nanosheets for Efficient Electrochemical Overall Water Splitting. NANOMATERIALS 2022; 12:nano12071098. [PMID: 35407217 PMCID: PMC9000688 DOI: 10.3390/nano12071098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
The development of high-performance and cost-effective earth-abundant transition metal-based electrocatalysts is of major interest for several key energy technologies, including water splitting. Herein, we report the synthesis of ultrathin CoMoP nanosheets through a simple ion etching and phosphorization method. The obtained catalyst exhibits outstanding electrocatalytic activity and stability towards oxygen and hydrogen evolution reactions (OER and HER), with overpotentials down to 273 and 89 mV at 10 mA cm−2, respectively. The produced CoMoP nanosheets are also characterized by very small Tafel slopes, 54.9 and 69.7 mV dec−1 for OER and HER, respectively. When used as both cathode and anode electrocatalyst in the overall water splitting reaction, CoMoP-based cells require just 1.56 V to reach 10 mA cm−2 in alkaline media. This outstanding performance is attributed to the proper composition, weak crystallinity and two-dimensional nanosheet structure of the electrocatalyst.
Collapse
|
9
|
Liu Y, Cao J, Chen Y, Wei M, Liu X, Li X, Wu Q, Feng B, Zhang Y, Yang L. Regulation of Morphology and Electrochemical Properties of Ni0.85Se via Fe Doping for Overall Water Splitting and Supercapacitor. CrystEngComm 2022. [DOI: 10.1039/d1ce01555a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Fe-doped Ni0.85Se nanosheets array on Ni foam was synthesized successfully through one-step solvothermal method as effective binder-free multifunctional catalysts for hydrogen evolution reaction (HER), oxygen evolution reaction (OER), overall...
Collapse
|
10
|
Yin Z, Liang J, Xu H, Luo H, Deng D, Lu W, Long S. MoO42− doped Ni-Fe-Se nanospheres electrodeposited on nickel foam as effective electrocatalysts for oxygen evolution reaction. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Liu G, Shuai C, Mo Z, Guo R, Liu N, Dong Q, Wang J, Pei H, Liu W, Guo X. Fe-doped Ni0.85Se nanospheres interspersed into carbon nanotubes as efficient and stable electrocatalyst for overall water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|