1
|
Xiao Z, Huang Q, Huang W, Zhang G, Li D, Zhang Z, Cheng H, Feng J, Li L. An "on-off-on" fluorescent sensor based on Sm:ZnO-NH 2 QDs for hexavalent chromium detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:125998. [PMID: 40068317 DOI: 10.1016/j.saa.2025.125998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 03/24/2025]
Abstract
The problems of poor water solubility, poor stability, and poor selectivity encountered in the determination of hexavalent chromium (Cr(VI)) in water using ZnO QDs need to be addressed. In this study, we successfully prepared Sm-doped, -NH2-modified Sm:ZnO-NH2 QDs via the sol-gel method. Sm doping was used to enhance the fluorescence intensity of ZnO QDs, while 3-aminopropyltrietoxysilane (APTEs) capping improved their water solubility and fluorescence stability. The fluorescence of Sm:ZnO-NH2 quantum dots was quenched after the addition of Cr(VI) due to the internal filtration effect(IFE), and was restored after the addition of ascorbic acid due to the redox reaction between ascorbic acid (AA) and Cr(VI). Leveraging the fluorescence response patterns of the Sm:ZnO-NH2 QDs system when exposed to Cr(VI) and AA, we developed an ''on-off-on'' fluorescent sensor that can specifically detect Cr(VI) and AA without interference from Cu2+ ions. The "on-off-on" fluorescent sensor exhibited a linear response to Cr(VI) concentrations ranging from 0.05 to 1.5 μg/mL, with a limit of detection (LOD) of 6.15 ng/mL. It exhibited excellent selectivity and repeatability. Furthermore, the Sm:ZnO-NH2 QDs fluorescent sensor was effectively utilized for detecting Cr(VI) in tap water, offering a new method for heavy metal detection via an "on-off-on" fluorescence switching mechanism.
Collapse
Affiliation(s)
- Zhenfang Xiao
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City 545006, Guangxi, PR China; Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004 Guangxi, PR China
| | - Qiumei Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City 545006, Guangxi, PR China; Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004 Guangxi, PR China
| | - Wenyi Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City 545006, Guangxi, PR China; Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004 Guangxi, PR China.
| | - Guoqiang Zhang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City 545006, Guangxi, PR China; Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004 Guangxi, PR China
| | - Dongdong Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City 545006, Guangxi, PR China; Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004 Guangxi, PR China
| | - Zhuwei Zhang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City 545006, Guangxi, PR China; Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004 Guangxi, PR China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City 545006, Guangxi, PR China; Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004 Guangxi, PR China
| | - Jun Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City 545006, Guangxi, PR China; Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004 Guangxi, PR China
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City 545006, Guangxi, PR China; Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004 Guangxi, PR China.
| |
Collapse
|
2
|
Meng Q, Yao J, Chen M, Dong Y, Liu X, Zhao S, Qiao R, Bai C, Qu C, Miao H. Using Cu 2+ to regulate the emission feature of near-infrared fluorescent sensor with AIE: To detect ascorbic acid in food samples and its application in bioimaging. Anal Chim Acta 2023; 1276:341602. [PMID: 37573096 DOI: 10.1016/j.aca.2023.341602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 08/14/2023]
Abstract
Conventional ascorbic acid (AA) detection methods such as chromatography, capillary electrophoresis, colorimetry, electrochemical detection, and enzymatic analysis require expensive equipment and complicated operation. Simple, rapid, and accurate AA detection is essential to inspect food quality, diagnose diseases, and assess immunity in humans. In this study, the first near-infrared fluorescence sensor DBHM with aggregation-induced emission was developed to detect AA under the involvement of Cu2+. The DBHM + Cu2+ sensor showed high sensitivity to AA with a limit of detection of 2.37 μM. The AA detection mechanism was investigated by optical studies, 1H NMR titration, high-resolution mass spectrometry, and infrared spectroscopy. AA was detected qualitatively and quantitatively by the DBHM + Cu2+ sensor in beverages, fruits, and Vitamin C tablets using a dual-mode (fluorescence and smartphone app) sensing platform. The new sensing system also showed low toxicity and excellent bioimaging in HeLa cells, C. elegans, and mice. This sensor could advance AA detection technology in the food industry and has potential bioimaging applications.
Collapse
Affiliation(s)
- Qian Meng
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China
| | - Junxiong Yao
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China
| | - Mengyu Chen
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China
| | - Yajie Dong
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China
| | - Xinyi Liu
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China
| | - Shuyang Zhao
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China
| | - Rui Qiao
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China.
| | - Cuibing Bai
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China; Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China.
| | - Changqing Qu
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang, Anhui, 236037, PR China
| | - Hui Miao
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang Normal University, Fuyang, Anhui Province, 236037, PR China.
| |
Collapse
|
3
|
Dong W, Wang L, Zhang R, Wen C, Su R, Gong X, Liang W. High luminescent N,S,P co-doped carbon dots for the fluorescence sensing of extreme acidity and folic acid. Dalton Trans 2023; 52:6551-6558. [PMID: 37185994 DOI: 10.1039/d3dt00560g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Carbon dots are popular luminescent materials because of their excellent fluorescence properties, but the low quantum yield limits their application. Heteroatom doping is a more convenient and popular approach to increase the quantum yield of carbon dots. Here, novel N,S,P heteroatom co-doped carbon dots (N,S,P-CDs) were synthesized by a simple one-step hydrothermal method using m-phenylenediamine, L-cysteine and phosphoric acid as raw materials. The as-prepared N,S,P-CDs showed excellent photoluminescence properties with a fluorescence quantum yield of up to 41%, which greatly encourages their application in fluorescence sensing. The N,S,P-CDs exhibited good fluorescence stability under salt solution, xenon lamp irradiation and ultraviolet lamp irradiation except for a high sensitivity to extreme acidity. The fluorescence intensity of the N,S,P-CDs can be decreased by as much as 85% when the pH of the solution changes from 2.50 to 4.75, that is, a small fluctuation in pH can cause an intense response of the fluorescence of the N,S,P-CDs. Therefore, an excellent fluorescence sensing platform for accurately monitoring the pH of extreme acidity has been constructed. In addition, the N,S,P-CDs can be applied for quantitative detection of folic acid based on the strong quenching effect of folic acid on the fluorescence of the N,S,P-CDs. Good linearity was obtained in the concentration range of 4.85-82.45 μM, with a detection limit of 0.148 μM. The constructed sensing platform was used for the determination of folic acid in actual samples of orange juice, oatmeal and tablets with satisfactory results.
Collapse
Affiliation(s)
- Wenjuan Dong
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Lu Wang
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Rongrong Zhang
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Chaochao Wen
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Ren Su
- Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou, Jiangsu 215006, China.
| | - Xiaojuan Gong
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| | - Wenting Liang
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
4
|
Yao CX, Yang L, Wang J, Lv H, Ji XM, Li SJ, Liu JM, Wang S. A visual and reversible nanoprobe for rapid and on-site determination of hexavalent chromium and lysine based on dual-emission carbon quantum dots coupled with smartphone. Mikrochim Acta 2022; 189:354. [PMID: 36031664 DOI: 10.1007/s00604-022-05370-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/04/2022] [Indexed: 10/15/2022]
Abstract
A straightforward, largely instrument-free, smartphone-based analytical strategy for hexavalent chromium and lysine (Lys) on-site detection via exploitation of dual-emission carbon quantum dots (DECQDs) has been demonstrated. DECQDs show dual-emission peaks at 439 and 630 nm with the excitation at 375 nm. As a dual-mode detection probe, the fluorescence and ultraviolet adsorption spectra of DECQDs vary with hexavalent chromium concentrations. Most importantly, Lys can restore the fluorescence of the hexavalent chromium added DECQD nanoprobe and change the color of the probe under natural light. At the same time, based on the participation of smartphones, the prepared DECQD probes favor the establishment of visual smart sensors that can also be used for the in-situ detection of targets. The on-site quantitative analysis exhibited a linear range of 5.3-320 μM with a detection limit of 1.6 μM towards Cr(VI) and the differentiation of Lys variation from 1 to 75 mM with a detection limit of 0.3 mM. The probe has been applied for the first time to enable vision-based colorimetric in complex samples such as water, milk and egg. The recoveries of Cr(VI) and Lys in real samples were between 90 and 104%, and the relative standard deviation (RSD) was as low as 0.4%. This work offers new perspectives for fundamental understanding and new design of functional luminescent materials that are applicable for food-safety and rapid and intelligent inspection. A straightforward, large instrument-free, smartphone-based analytical strategy with dual-emission carbon quantum dots was developed for hexavalent chromium and Lys on-site detection via fluorescent and colorimetric twofold readout measure.
Collapse
Affiliation(s)
- Chi-Xuan Yao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lu Yang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xue-Meng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shi-Jie Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Meng F, Xu H, Wang S, Wei J, Zhou W, Wang Q, Li P, Kong F, Zhang Y. One-step high-yield preparation of nitrogen- and sulfur-codoped carbon dots with applications in chromium(vi) and ascorbic acid detection. RSC Adv 2022; 12:19686-19694. [PMID: 35919374 PMCID: PMC9277421 DOI: 10.1039/d2ra01758j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
In this research, a nitrogen- (N) and sulfur- (S) codoped carbon dot (CDs-IPM)-based sensor was synthesized using a single-step hydrothermal method. Specifically, microcrystalline cellulose (MCC) was the main raw material, which was extracted from banana pseudo-stem-based waste, while autonomous sulfonic acid-functionalized ionic liquid (SO3H-IL) and polyethylene glycol 400 (PEG 400) acted as the N, S dopant, and surface modifier, respectively. Comprehensive spectroscopic characterization of the synthesized CDs-IPM revealed the introduction of S, N atoms in the matrix with existence of surface oxygenic functional groups. The CDs-IPM possessed enhanced photoluminescence (PL) intensity, synthetic yield, and PL quantum yield (PLQY). Additionally, electron transfer between the CDs-IPM, hexavalent chromium (Cr(vi)), and subsequent ascorbic acid (AA) succeeded in turning the fluorescence on and off. The detection limit was 17 nM for Cr(vi), while it was 103 nM for AA. Our study data can simplify the process of synthesis of CDs utilizing biodegradable starting materials. The probe reported in this study may serve as a valuable addition to the field of environment monitoring by virtue of its enhanced detection sensitivity, high selectivity, and stability.
Collapse
Affiliation(s)
- Fanrong Meng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
- College of Food and Biological Engineering, Jimei University Xiamen 361021 P. R. China
| | - Haoran Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Shuolin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Jingxian Wei
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Wengong Zhou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Qiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Peng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Yucang Zhang
- College of Food and Biological Engineering, Jimei University Xiamen 361021 P. R. China
| |
Collapse
|
6
|
Fan P, Liu C, Hu C, Li F, Lin X, Yang S, Xiao F. Green and facile synthesis of iron-doped biomass carbon dots as a dual-signal colorimetric and fluorometric probe for the detection of ascorbic acid. NEW J CHEM 2022. [DOI: 10.1039/d1nj05047h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new method based on biomass Fe-CDs with fluorescence properties and simulated oxidase activity colorimetric and fluorometric dual-readout assay for highly effective detection of AA was established.
Collapse
Affiliation(s)
- Pengfei Fan
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| | - Can Liu
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| | - Congcong Hu
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| | - Feifei Li
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Xi Lin
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Shengyuan Yang
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| | - Fubing Xiao
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan, 421001, People's Republic of China
| |
Collapse
|
7
|
Karastogianni S, Diamantidou D, Girousi S. Selective Voltammetric Detection of Ascorbic Acid from Rosa Canina on a Modified Graphene Oxide Paste Electrode by a Manganese(II) Complex. BIOSENSORS 2021; 11:294. [PMID: 34562884 PMCID: PMC8465974 DOI: 10.3390/bios11090294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 05/27/2023]
Abstract
Voltammetric techniques have been considered as an important analytical tool applied to the determination of trace concentrations of many biological molecules including ascorbic acid. In this paper, ascorbic acid was detected by square wave voltammetry, using graphene oxide paste as a working electrode, modified by a film of a manganese(II) complex compound. Various factors, such as the effect of pH, affecting the response characteristics of the modified electrode were investigated. The relationship between the peak height and ascorbic acid concentration within the modified working electrode was investigated, using the calibration graph. The equation of the calibration graph was found to be: I = 0.0550γac + 0.155 with R2 = 0.9998, where I is the SWV current and γac is the mass concentration of ascorbic acid. The LOD and LOQ of the proposed method were determined to be 1.288 μg/L and 3.903 μg/L, respectively. Several compounds, such as riboflavin, biotin, and ions, such as Fe and Cu, were tested and it seemed that they did not interfere with the analytic signal. The proposed procedure was successfully applied in the determination of ascorbic acid in Rosa canina hips.
Collapse
Affiliation(s)
| | | | - Stella Girousi
- Analytical Chemistry Laboratory, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.K.); (D.D.)
| |
Collapse
|
8
|
Song H, Zhou Y, Li Z, Zhou H, Sun F, Yuan Z, Guo P, Zhou G, Yu X, Hu J. Inner filter effect between upconversion nanoparticles and Fe(ii)-1,10-phenanthroline complex for the detection of Sn(ii) and ascorbic acid (AA). RSC Adv 2021; 11:17212-17221. [PMID: 35479685 PMCID: PMC9033164 DOI: 10.1039/d1ra01925b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Dual-function and multi-function sensors can use the same material or detection system to achieve the purpose of detection of two or more substances. Due to their high sensitivity and specificity, dual-function and multi-function sensors have potential applications in many fields. In this article, we designed a dual-function sensor to detect Sn(ii) and ascorbic acid (AA) based on the inner filter effect (IFE) between NaYF4:Yb,Er@NaYF4@PAA (UCNPs@PAA) and Fe(ii)–1,10-phenanthroline complex. Fe(ii)–1,10-phenanthroline complex has strong absorption in most of the ultraviolet-visible light range (350 nm–600 nm), and this absorption band overlaps with the green emission peak of UCNPs@PAA at 540 nm; Fe(ii)–1,10-phenanthroline complex can significantly quench the green light emission of UCNPs@PAA. When Sn(ii) or AA is added to the UCNPs@PAA/Fe(iii)/1,10-phenanthroline, they can reduce Fe(iii) to Fe(ii). Fe(ii) can react with 1,10-phenanthroline to form an orange complex, thereby quenching the green light emission of UCNPs@PAA. And the quenching efficiency is related to the concentration of Sn(ii) and AA; there is a linear relationship between quenching efficiency and the concentration of Sn(ii) and AA, within a certain concentration range the detection limits of this dual-function sensor for Sn(ii) and AA are 1.08 μM and 0.97 μM, respectively. In addition, the dual-function sensor can also detect Sn(ii) and AA in tap and spring water. Based on the inner filter effect (IFE), we use UCNPs to develop a dual-function sensors, which can realize sensitive and selective detection for the Sn(ii) and ascorbic acid (AA).![]()
Collapse
Affiliation(s)
- Haining Song
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 P. R. China
| | - Yifei Zhou
- School of Mechanical, Electrical & Information Engineering, Shandong University Weihai 264209 P.R. China
| | - Zexin Li
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 P. R. China
| | - Haifeng Zhou
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Fenglei Sun
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 P. R. China
| | - Zhenlei Yuan
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 P. R. China
| | - Peng Guo
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 P. R. China
| | - Guangjun Zhou
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 P. R. China
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 P. R. China
| | - Jifan Hu
- State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 P. R. China
| |
Collapse
|