1
|
Ibrayeva A, Abibulla U, Imanbekova Z, Baptayev B, O’Reilly RJ, Balanay MP. Advancements in Carbazole-Based Sensitizers and Hole-Transport Materials for Enhanced Photovoltaic Performance. Molecules 2024; 29:5035. [PMID: 39519676 PMCID: PMC11547213 DOI: 10.3390/molecules29215035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Carbazole-based molecules play a significant role in dye-sensitized solar cells (DSSCs) due to their advantageous properties. Carbazole derivatives are known for their thermal stability, high hole-transport capability, electron-rich (p-type) characteristics, elevated photoconductivity, excellent chemical stability, and commercial availability. This review focuses on DSSCs, including their structures, working principles, device characterization, and the photovoltaic performance of carbazole-based derivatives. Specifically, it covers compounds such as 2,7-carbazole and indolo[3,2-b]carbazole, which are combined with various acceptors like benzothiadiazole, thiazolothiazole, diketopyrrolopyrrole, and quinoxaline, as reported over the past decade. The review will also outline the relationship between molecular structure and power-conversion efficiencies. Its goal is to summarize recent research and advancements in carbazole-based dyes featuring a D-π-A architecture for DSSCs. Additionally, this review addresses the evolution of carbazole-based hole-transport materials (HTMs), which present a promising alternative to the costly spiro-OMeTAD. We explore the development of novel HTMs that leverage the unique properties of carbazole derivatives to enhance charge transport, stability, and overall device performance. By examining recent innovations and emerging trends in carbazole-based HTMs, we provide insights into their potential to reduce costs and improve the efficiency of DSSCs.
Collapse
Affiliation(s)
- Ayagoz Ibrayeva
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan (B.B.)
- Department of Chemistry, L.N. Gumilyov Eurasian National University, 2 Satpayev St., Astana 010008, Kazakhstan
| | - Urker Abibulla
- Chemistry Department, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| | - Zulfiya Imanbekova
- Chemistry Department, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| | - Bakhytzhan Baptayev
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan (B.B.)
| | - Robert J. O’Reilly
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Mannix P. Balanay
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan (B.B.)
- Chemistry Department, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| |
Collapse
|
2
|
Liu Y, Zhu S, Li W, Su Y, Zhou H, Chen R, Chen W, Zhang W, Niu X, Chen X, An Z. An optimal molecule-matching co-sensitization system for the improvement of photovoltaic performances of DSSCs. Phys Chem Chem Phys 2022; 24:22580-22588. [PMID: 36102796 DOI: 10.1039/d2cp02796h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three biphenyl co-sensitizers (4OBA, 8OBA and 12OBA) with different terminal oxyalkyl chains were synthesized and co-sensitized respectively with the main dye (NP-1) in co-sensitized solar cells (co-DSSCs). The effects of the terminal oxyalkyl chains on the photophysical, electrochemical and photovoltaic properties of the co-DSSCs were systematically investigated. The optimal molecular matching relationship between the co-sensitizers and the main dye was obtained through density functional theory (DFT) calculations. Consequently, 4OBA has the most appropriate three-dimensional (3D) molecular structure, which could not only fill the gap between the large-size dyes but also plays a partial shielding role, inhibiting dye aggregation and electron recombination, therefore yielding the highest power conversion efficiency (PCE) for the co-DSSCs with NP-1@4OBA. This study suggests that adjusting the terminal oxyalkyl chains of the co-sensitizers can be used to enhance the intramolecular charge transfer efficiency and inhibit electron recombination, ultimately improving the photovoltaic performances of the co-DSSCs.
Collapse
Affiliation(s)
- Yongliang Liu
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China.,School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Shengbo Zhu
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China.,School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Wei Li
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China.,School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Yilin Su
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China.,School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Hongwei Zhou
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China.,School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Ran Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an 710119, P. R. China.,International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P. R. China.,Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Weixing Chen
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China.,School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Wenzhi Zhang
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China.,School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Xiaoling Niu
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China.,School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Xinbing Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an 710119, P. R. China.,International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P. R. China.,Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Zhongwei An
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an 710119, P. R. China.,International Joint Research Center of Shaanxi Province for Photoelectric Materials Science, Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P. R. China.,Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|