1
|
Mono- and Di-substituted [FeFe]-Hydrogenase H-cluster Mimics Bearing the 3,4-Dimercaptobenzaldehyde Bridge Moiety: Insight into Synthesis, Characterization and Electrochemical Investigations. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
2
|
Substituent effects in carbon-nanotube-supported diiron monophosphine complexes for hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Z-scheme Ag-loaded g-C3N4/CuNb2O6 composite photocatalyst for RhB dye degradation. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Abaalkhail SA, Abul-Futouh H, Görls H, Weigand W. Electrochemical Behavior of Mono‐Substituted [FeFe]‐Hydrogenase H‐Cluster Mimic Mediated by Stannylated Dithiolato Ligand. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Hassan Abul-Futouh
- The Hashemite University Chemistry P.O. Box 330127, Zarqa 13133 13133 Zaraqa JORDAN
| | | | | |
Collapse
|
5
|
Liu X, Ma Z, Jin B, Wang D, Zhao P. Substituent effects of tertiary phosphines on the structures and electrochemical performances of azadithiolato‐bridged diiron model complexes of [FeFe]‐hydrogenases. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xu‐Feng Liu
- School of Materials and Chemical Engineering Ningbo University of Technology Ningbo P. R. China
| | - Zhong‐Yi Ma
- School of Materials Science and Engineering North University of China Taiyuan P. R. China
| | - Bo Jin
- School of Materials Science and Engineering North University of China Taiyuan P. R. China
| | - Dong Wang
- School of Materials Science and Engineering North University of China Taiyuan P. R. China
| | - Pei‐Hua Zhao
- School of Materials Science and Engineering North University of China Taiyuan P. R. China
| |
Collapse
|
6
|
Daraosheh AQ, Abul-Futouh H, Murakami N, Ziems KM, Görls H, Kupfer S, Gräfe S, Ishii A, Celeda M, Mlostoń G, Weigand W. Novel [FeFe]-Hydrogenase Mimics: Unexpected Course of the Reaction of Ferrocenyl α-Thienyl Thioketone with Fe 3(CO) 12. MATERIALS 2022; 15:ma15082867. [PMID: 35454560 PMCID: PMC9029206 DOI: 10.3390/ma15082867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023]
Abstract
The influence of the substitution pattern in ferrocenyl α-thienyl thioketone used as a proligand in complexation reactions with Fe3(CO)12 was investigated. As a result, two new sulfur–iron complexes, considered [FeFe]-hydrogenase mimics, were obtained and characterized by spectroscopic techniques (1H, 13C{1H} NMR, IR, MS), as well as by elemental analysis and X-ray single crystal diffraction methods. The electrochemical properties of both complexes were studied and compared using cyclic voltammetry in the absence and in presence of acetic acid as a proton source. The performed measurements demonstrated that both complexes can catalyze the reduction of protons to molecular hydrogen H2. Moreover, the obtained results showed that the presence of the ferrocene moiety at the backbone of the linker of both complexes improved the stability of the reduced species.
Collapse
Affiliation(s)
- Ahmad Q. Daraosheh
- Department of Chemistry, College of Arts and Sciences, University of Petra, P.O. Box 961343, Amman 11196, Jordan;
| | - Hassan Abul-Futouh
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
- Correspondence: (H.A.-F.); (G.M.); (W.W.)
| | - Natsuki Murakami
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan; (N.M.); (A.I.)
| | - Karl Michael Ziems
- Institut für Physikalische Chemie und Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743 Jena, Germany; (K.M.Z.); (S.K.); (S.G.)
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany;
| | - Stephan Kupfer
- Institut für Physikalische Chemie und Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743 Jena, Germany; (K.M.Z.); (S.K.); (S.G.)
| | - Stefanie Gräfe
- Institut für Physikalische Chemie und Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743 Jena, Germany; (K.M.Z.); (S.K.); (S.G.)
| | - Akihiko Ishii
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan; (N.M.); (A.I.)
| | - Małgorzata Celeda
- Department of Organic & Applied Chemistry, University of Lodz, Tamka 12, 91-403 Łódź, Poland;
| | - Grzegorz Mlostoń
- Department of Organic & Applied Chemistry, University of Lodz, Tamka 12, 91-403 Łódź, Poland;
- Correspondence: (H.A.-F.); (G.M.); (W.W.)
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany;
- Correspondence: (H.A.-F.); (G.M.); (W.W.)
| |
Collapse
|
7
|
Realini F, Elleouet C, Pétillon F, Schollhammer P. Tri‐ and tetra‐substituted derivatives of [Fe2(CO)6(µ‐dithiolate)] as novel dinuclear platforms related to the H‐cluster of [FeFe]H2ases. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Benndorf S, Hofmeister E, Wächtler M, Görls H, Liebing P, Peneva K, Gräfe S, Kupfer S, Dietzek‐Ivanšić B, Weigand W. Unravelling the Mystery: Enlightenment of the Uncommon Electrochemistry of Naphthalene Monoimide [FeFe] Hydrogenase Mimics. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Stefan Benndorf
- Institute of Inorganic and Analytical Chemistry Friedrich Schiller University Jena Humboldtstrasse 8 07743 Jena Germany
| | - Elisabeth Hofmeister
- Department Functional Interfaces Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT) Albert-Einstein-Straße 9 07745 Jena Germany
| | - Maria Wächtler
- Department Functional Interfaces Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT) Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Abbe Center of Photonics (ACP) Friedrich Schiller University Jena Albert-Einstein-Straße 6 07745 Jena Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry Friedrich Schiller University Jena Humboldtstrasse 8 07743 Jena Germany
| | - Phil Liebing
- Institute of Inorganic and Analytical Chemistry Friedrich Schiller University Jena Humboldtstrasse 8 07743 Jena Germany
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry Friedrich Schiller University Jena Lessingstraße 8 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Jena Center of Soft Matter Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany
| | - Stefanie Gräfe
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Abbe Center of Photonics (ACP) Friedrich Schiller University Jena Albert-Einstein-Straße 6 07745 Jena Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Benjamin Dietzek‐Ivanšić
- Department Functional Interfaces Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT) Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Abbe Center of Photonics (ACP) Friedrich Schiller University Jena Albert-Einstein-Straße 6 07745 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Jena Center of Soft Matter Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany
| | - Wolfgang Weigand
- Institute of Inorganic and Analytical Chemistry Friedrich Schiller University Jena Humboldtstrasse 8 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Jena Center of Soft Matter Friedrich Schiller University Jena Philosophenweg 7a 07743 Jena Germany
| |
Collapse
|
9
|
Abul-Futouh H, Abaalkhail SJ, Harb MK, Görls H, Weigand W. Structural studies and electrochemical catalysis investigation of [FeFe]-hydrogenase H-cluster mimics mediated by monophosphane ligands. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Gu XL, Li JR, Li QL, Guo Y, Jing XB, Chen ZB, Zhao PH. Mononuclear nickel(II) dithiolate complexes with chelating diphosphines: Insight into protonation and electrochemical proton reduction. J Inorg Biochem 2021; 219:111449. [PMID: 33798827 DOI: 10.1016/j.jinorgbio.2021.111449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 11/25/2022]
Abstract
Inspired by the metal active sites of [FeFe]- and [NiFe]‑hydrogenases, a series of mononuclear Ni(II) ethanedithiolate complexes [{(Ph2PCH2)2×}Ni(SCH2CH2S)] (X = NCH2C5H4N-p (2a), NCH2C6H5 (2b), NCH2CHMe2 (2c), and CH2 (2d)) with chelating diphosphines were readily synthesized through the room-temperature treatments of mononuclear Ni(II) dichlorides [{(Ph2PCH2)2×}NiCl2] (1a-1d) with ethanedithiol (HSCH2CH2SH) in the presence of triethylamine (Et3N) as acid-binding agent. All the as-prepared complexes 1a-1d and 2a-2d are fully characterized through elemental analysis, nuclear magnetic resonance (NMR) spectrum, and by X-ray crystallography for 1b, 2a-2d. To further explore proton-trapping behaviors of this type of mononuclear Ni(II) complexes for catalytic hydrogen (H2) evolution, the protonation and electrochemical proton reduction of 2a-2c with aminodiphosphines (labeled PCNCP = (Ph2PCH2)2NR) and reference analogue 2d with nitrogen-free diphosphine (dppp = (Ph2PCH2)2CH2) are studied and compared under trifluoroacetic acid (TFA) as a proton source. Interestingly, the treatments of 2a-2d with excess TFA resulted in the unexpected formation of dinuclear Ni(II)-Ni(II) dication complexes [{(Ph2PCH2)2×}2Ni2(μ-SCH2CH2S)](CF3CO2)2 (3a-3d) and mononuclear Ni(II) N-protonated complexes [{(Ph2PCH2)2N(H)R}Ni(SCH2CH2S)](CF3CO2) (4a-4c), which has been well supported by high-resolution electrospray ionization mass spectroscopy (HRESI-MS), NMR (31P, 1H) as well as fourier transform infrared spectroscopy (FT-IR) techniques, and especially by X-ray crystallography for 3d. Additionally, the electrochemical properties of 2a-2d are investigated in the absence and presence of strong acid (TFA) by using cyclic voltammetry (CV), showing that the complete protonation of 2a-2d gave rise to dinuclear Ni2S2 species 3a-3d for electrocatalytic proton reduction to H2.
Collapse
Affiliation(s)
- Xiao-Li Gu
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Jian-Rong Li
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Qian-Li Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Yang Guo
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Xing-Bin Jing
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Zi-Bing Chen
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Pei-Hua Zhao
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
11
|
Gu XL, Li JR, Jin B, Guo Y, Jing XB, Zhao PH. Phosphine-substituted diiron complexes Fe 2( μ-Rodt)(CO) 6−n(PPh 3) n (R = Ph, Me, H and n = 1, 2) featuring desymmetrized oxadithiolate bridges: structures, protonation, and electrocatalysis. NEW J CHEM 2021. [DOI: 10.1039/d1nj03398k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of desymmetrized dithiolates (Rodt) and phosphine coordination modes (PPh3) on the structural, protophilic, and electrocatalytic features of diiron complexes 4–6 and 7–9 is described.
Collapse
Affiliation(s)
- Xiao-Li Gu
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Jian-Rong Li
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Bo Jin
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Yang Guo
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Xing-Bin Jing
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Pei-Hua Zhao
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| |
Collapse
|