1
|
Huang X, He R, Wang S, Yang Y, Feng L. High-Valent Ni Species Induced by Inactive MoO 2 for Efficient Urea Oxidation Reaction. Inorg Chem 2022; 61:18318-18324. [DOI: 10.1021/acs.inorgchem.2c03498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xingyu Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou225002, China
| | - Runze He
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou225002, China
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou325035, China
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou225002, China
| | - Yun Yang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou325035, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou225002, China
| |
Collapse
|
2
|
Unraveling the formation of optimum point in NiCo-based electrocatalysts for urea oxidation reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Zhang Z, Yang J, Liu J, Gu ZG, Yan X. Sulfur-doped NiCo carbonate hydroxide with surface sulfate groups for highly enhanced electro-oxidation of urea. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Patil SA, Bui HT, Hussain S, Rabani I, Seo Y, Jung J, Shrestha NK, Kim H, Im H. Self-standing SnS nanosheet array: a bifunctional binder-free thin film catalyst for electrochemical hydrogen generation and wastewater treatment. Dalton Trans 2021; 50:12723-12729. [PMID: 34545882 DOI: 10.1039/d1dt01855h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydrogen generation during wastewater treatment has remained a long-standing challenge for the environment preservation welfare. In the present work, we have fabricated a promising bifunctional thin film-based catalyst for hydrogen generation with concurrent wastewater treatment. The prepared catalyst film is a vertically oriented thin SnS (tin monosulfide) nanosheet array on a Ni-foam (SnS/NF) obtained via a solution process, demonstrating a promising electrocatalytic activity towards the generation of green H2 fuel at the cathodic side and the decomposition of urea waste at the anodic side. Notably, while assembling two identical electrodes as cathode and anode together with a reference electrode (i.e., SnS/NF∥SnS/NF vs. RHE assembly) in 1 M KOH aqueous electrolyte containing 0.33 M urea, the electrolyzer electrolyzed urea at a lower cell potential of 1.37 and 1.43 V (vs. RHE) to deliver a current density of 10 mA cm-2 and 50 mA cm-2, respectively, for the decomposition of urea at the anodic SnS/NF electrode and green hydrogen fuel generation at the cathodic SnS/NF electrode. This activity on electrocatalytic urea decomposition lies within the best performance to those of the previously reported sulfide-based and other catalytic materials. The promising catalytic activities of the SnS catalyst film are attributed to its combined effect of self-standing nanosheet array morphology and high crystallinity, which provides abundant active sites and a facile charge transfer path between the nanosheet arrays and the electrolyte. Thus, the present work offers a green avenue to the waste-urea treatment in water and sustainable hydrogen energy production.
Collapse
Affiliation(s)
- Supriya A Patil
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Hoa Thi Bui
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viê.t, Cau Giay, Ha Noi, Vietnam
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Iqra Rabani
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Yongho Seo
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Jongwan Jung
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Nabeen K Shrestha
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea.
| | - Hyungsang Kim
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea.
| | - Hyunsik Im
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|