1
|
Xue Y, Xiong Y, Huang W, Liu J, Liu W. Remodeling of ribosomally synthesized peptide backbones based on posttranslational modifications. Nat Prod Rep 2025. [PMID: 40392103 DOI: 10.1039/d5np00018a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Covering: 2013-2024Benefiting significantly from recent advances in genome mining, ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products have emerged as a source of chemical inspiration to drive the discovery of therapeutic agents and the development of new biological tools for addressing challenges to synthetic approaches. Despite being confined to twenty proteinogenic amino acid building blocks, the structural complexity and diversity of RiPPs that arise from enzymatic posttranslational modifications (PTMs) surpass expectations and are now believed to be comparable to those produced by non-ribosomal peptide synthetases. Here, we highlight the PTM enzymes characterized over the past decade that engage the -(NH-Cα-CO)n- repeating units in transformations, particularly those leading to structural rearrangements by peptide backbone remodeling. Unveiling the catalytic mechanisms of these unusual PTM enzymes deepens the understanding in RiPP biosynthesis and, eventually, will enhance our capability of rational design, development and production of functional peptide agents using synthetic biology strategies.
Collapse
Affiliation(s)
- Yanqing Xue
- State Key Laboratory of Microbial Metabolism and School of Life Science & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Yijiao Xiong
- State Key Laboratory of Microbial Metabolism and School of Life Science & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Wei Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Jianing Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Wen Liu
- State Key Laboratory of Microbial Metabolism and School of Life Science & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 1308 Keyuan Road, Shanghai 200240, China
| |
Collapse
|
2
|
Chiang CY, Ohashi M, Tang Y. Fungal RiPPs Side Chain Macrocyclization Catalyzed by Copper-Dependent DUF3328 Enzyme. J Am Chem Soc 2025; 147:8113-8117. [PMID: 40029812 DOI: 10.1021/jacs.4c18770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Fungal enzymes containing domain of unknown function (DUF) 3328 have been implicated in the oxidative maturation of ribosomally synthesized and post-translationally modified peptides (RiPPs). We report here the functional characterization of one such enzyme, AprY, involved in the biosynthesis of RiPP asperipin-2a. Biochemical reconstitution of AprY showed the enzyme catalyzes two consecutive C-O cross-linking reactions between tyrosines and beta-carbons of residues in the core hexapeptide. The side-chain macrocyclization activities of AprY are copper- and oxygen-dependent and do not require a leader peptide sequence.
Collapse
|
3
|
Khan A, Haedar JR, Kiselov V, Romanuks V, Smits G, Donadio S, Phan CS. Radical SAM Enzyme WprB Catalyzes Uniform Cross-Link Topology between Trp-C5 and Arg-Cγ on the Precursor Peptide. ACS Chem Biol 2025; 20:259-265. [PMID: 39893661 PMCID: PMC11851443 DOI: 10.1021/acschembio.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Cross-link containing products from ribosomally synthesized and post-translationally modified peptides (RiPPs) are generated by radical SAM enzymes (rSAM). Here, we bioinformatically expanded rSAM enzymes based on the known families StrB, NxxcB, WgkB, RrrB, TqqB and GggB. Through in vivo functional studies in E. coli, the newly identified enzyme WprB from Xenorhabdus sp. psl was found to catalyze formation of a cross-link between Trp-C5 and Arg-Cγ at three WPR motifs on the precursor peptide WprA. This represents the first report of this type of cross-link by rSAM enzymes.
Collapse
Affiliation(s)
- Abujunaid
Habib Khan
- Latvian
Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia
| | - Jabal Rahmat Haedar
- Latvian
Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia
| | - Vic Kiselov
- Latvian
Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia
| | - Viktors Romanuks
- Latvian
Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia
| | - Gints Smits
- Latvian
Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia
| | - Stefano Donadio
- Latvian
Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia
- NAICONS
Srl, 20139 Milan, Italy
| | - Chin-Soon Phan
- Latvian
Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia
| |
Collapse
|
4
|
Liu J, Liu R, He BB, Lin X, Guo L, Wu G, Li YX. Bacterial Cytochrome P450 Catalyzed Macrocyclization of Ribosomal Peptides. ACS BIO & MED CHEM AU 2024; 4:268-279. [PMID: 39712204 PMCID: PMC11659900 DOI: 10.1021/acsbiomedchemau.4c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/09/2024] [Accepted: 11/07/2024] [Indexed: 12/24/2024]
Abstract
Macrocyclization is a vital process in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), significantly enhancing their structural diversity and biological activity. Universally found in living organisms, cytochrome P450 enzymes (P450s) are versatile catalysts that facilitate a wide array of chemical transformations and have recently been discovered to contribute to the expansion and complexity of the chemical spectrum of RiPPs. Particularly, P450-catalyzed biaryl-bridged RiPPs, characterized by highly modified structures, represent an intriguing but underexplored class of natural products, as demonstrated by the recent discovery of tryptorubin A, biarylitide and cittilin. These P450 enzymes demonstrate their versatility by facilitating peptide macrocyclization through the formation of carbon-carbon (C-C), carbon-nitrogen (C-N) and ether bonds between the side chains of tyrosine (Tyr), tryptophan (Trp) and histidine (His). This Review briefly highlights the latest progress in P450-catalyzed macrocyclization within RiPP biosynthesis, resulting in the generation of structurally complex RiPPs. These findings have expedited the discovery and detailed analysis of new P450s engaged in RiPP biosynthetic pathways.
Collapse
Affiliation(s)
- Jing Liu
- Department
of Chemistry, The University of Hong Kong, 999077 Hong Kong
Special Administrative Region, Hong Kong,
China
| | - Runze Liu
- Department
of Chemistry, The University of Hong Kong, 999077 Hong Kong
Special Administrative Region, Hong Kong,
China
| | - Bei-Bei He
- Department
of Chemistry, The University of Hong Kong, 999077 Hong Kong
Special Administrative Region, Hong Kong,
China
| | - Xiaoqian Lin
- Department
of Chemistry, The University of Hong Kong, 999077 Hong Kong
Special Administrative Region, Hong Kong,
China
| | - Longcheng Guo
- Department
of Chemistry, The University of Hong Kong, 999077 Hong Kong
Special Administrative Region, Hong Kong,
China
| | - Gengfan Wu
- Department
of Chemistry, The University of Hong Kong, 999077 Hong Kong
Special Administrative Region, Hong Kong,
China
| | - Yong-Xin Li
- Department
of Chemistry, The University of Hong Kong, 999077 Hong Kong
Special Administrative Region, Hong Kong,
China
| |
Collapse
|
5
|
Fang P, Pang WK, Xuan S, Chan WL, Leung KCF. Recent advances in peptide macrocyclization strategies. Chem Soc Rev 2024; 53:11725-11771. [PMID: 39560122 DOI: 10.1039/d3cs01066j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Recently, owing to their special spatial structures, peptide-based macrocycles have shown tremendous promise and aroused great interest in multidisciplinary research ranging from potent antibiotics against resistant strains to functional biomaterials with novel properties. Besides traditional monocyclic peptides, many fascinating polycyclic and remarkable higher-order cyclic, spherical and cylindric peptidic systems have come into the limelight owing to breakthroughs in various chemical (e.g., native chemical ligation and transition metal catalysis), biological (e.g., post-translational enzymatic modification and genetic code reprogramming), and supramolecular (e.g., mechanically interlocked, metal-directed folding and self-assembly via noncovalent interactions) macrocyclization strategies developed in recent decades. In this tutorial review, diverse state-of-the-art macrocyclization methodologies and techniques for peptides and peptidomimetics are surveyed and discussed, with insights into their practical advantages and intrinsic limitations. Finally, the synthetic-technical aspects, current unresolved challenges, and outlook of this field are discussed.
Collapse
Affiliation(s)
- Pengyuan Fang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, P. R. China.
| | - Wing-Ka Pang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Wai-Lun Chan
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, P. R. China.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ken Cham-Fai Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| |
Collapse
|
6
|
Matabaro E, Witte L, Gherlone F, Vogt E, Kaspar H, Künzler M. Promiscuity of Omphalotin A Biosynthetic Enzymes Allows de novo Production of Non-Natural Multiply Backbone N-Methylated Peptide Macrocycles in Yeast. Chembiochem 2024; 25:e202300626. [PMID: 38059521 DOI: 10.1002/cbic.202300626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/08/2023]
Abstract
Multiple backbone N-methylation and macrocyclization improve the proteolytic stability and oral availability of therapeutic peptides. Chemical synthesis of such peptides is challenging, in particular for the generation of peptide libraries for screening purposes. Enzymatic backbone N-methylation and macrocyclization occur as part of both non-ribosomal and ribosomal peptide biosynthesis, exemplified by the fungal natural products cyclosporin A and omphalotin A, respectively. Omphalotin A, a 9fold backbone N-methylated dodecamer isolated from the agaricomycete Omphalotus olearius, can be produced in Pichia pastoris by coexpression of the ophMA and ophP genes coding for the peptide precursor protein harbouring an autocatalytic peptide α-N-methyltransferase domain, and a peptide macrocyclase, respectively. Since both OphMA and OphP were previously shown to be relatively promiscuous in terms of peptide substrates, we expressed mutant versions of ophMA, encoding OphMA variants with altered core peptide sequences, along with wildtype ophP and assessed the production of the respective peptide macrocycles by the platform by high-performance liquid chromatography, coupled with tandem mass spectrometry (HPLC-MS/MS). Our results demonstrate the successful production of fifteen non-natural omphalotin-derived macrocycles, containing polar, aromatic and charged residues, and, thus, suggest that the system may be used as biotechnological platform to generate libraries of non-natural multiply backbone N-methylated peptide macrocycles.
Collapse
Affiliation(s)
- Emmanuel Matabaro
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog Weg 4, HCI F423, 8093, Zürich, Switzerland
| | - Luca Witte
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog Weg 4, HCI F423, 8093, Zürich, Switzerland
| | - Fabio Gherlone
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog Weg 4, HCI F423, 8093, Zürich, Switzerland
| | - Eva Vogt
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog Weg 4, HCI F423, 8093, Zürich, Switzerland
| | - Hannelore Kaspar
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog Weg 4, HCI F423, 8093, Zürich, Switzerland
| | - Markus Künzler
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog Weg 4, HCI F423, 8093, Zürich, Switzerland
| |
Collapse
|
7
|
Hu YL, Yin FZ, Shi J, Ma SY, Wang ZR, Tan RX, Jiao RH, Ge HM. P450-Modified Ribosomally Synthesized Peptides with Aromatic Cross-Links. J Am Chem Soc 2023; 145:27325-27335. [PMID: 38069901 DOI: 10.1021/jacs.3c07416] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Cyclization of linear peptides is an effective strategy to convert flexible molecules into rigid compounds, which is of great significance for enhancing the peptide stability and bioactivity. Despite significant advances in the past few decades, Nature and chemists' ability to macrocyclize linear peptides is still quite limited. P450 enzymes have been reported to catalyze macrocyclization of peptides through cross-linkers between aromatic amino acids with only three examples. Herein, we developed an efficient workflow for the identification of P450-modified RiPPs in bacterial genomes, resulting in the discovery of a large number of P450-modified RiPP gene clusters. Combined with subsequent expression and structural characterization of the products, we have identified 11 novel P450-modified RiPPs with different cross-linking patterns from four distinct classes. Our results greatly expand the structural diversity of P450-modified RiPPs and provide new insights and enzymatic tools for the production of cyclic peptides.
Collapse
Affiliation(s)
- Yi Ling Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Fang Zhou Yin
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Shi Ying Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zi Ru Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Sarksian R, Zhu L, van der Donk WA. syn-Elimination of glutamylated threonine in lanthipeptide biosynthesis. Chem Commun (Camb) 2023; 59:1165-1168. [PMID: 36625436 PMCID: PMC9890492 DOI: 10.1039/d2cc06345j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 12/15/2022]
Abstract
Methyllanthionine (MeLan) containing macrocycles are key structural features of lanthipeptides. They are formed typically by anti-elimination of L-Thr residues followed by cyclization of L-Cys residues onto the (Z)-dehydrobutyrine (Dhb) intermediates. In this report we demonstrate that the biosynthesis of lanthipeptides containing the D-allo-L-MeLan macrocycle such as the morphogenetic lanthipeptide SapT proceeds through (E)-Dhb intermediates formed by net syn-elimination of L-Thr.
Collapse
Affiliation(s)
- Raymond Sarksian
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61822, USA.
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61822, USA
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61822, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61822, USA
| |
Collapse
|
9
|
Li X, Ma S, Zhang Q. Chemical Synthesis and Biosynthesis of Darobactin. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Han Y, Shi J, Li S, Dan T, Yang W, Yang M. Selective editing of a peptide skeleton via C-N bond formation at N-terminal aliphatic side chains. Chem Sci 2022; 13:14382-14386. [PMID: 36545141 PMCID: PMC9749142 DOI: 10.1039/d2sc04909k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
The applications of peptides and peptidomimetics have been demonstrated in the fields of therapeutics, diagnostics, and chemical biology. Strategies for the direct late-stage modification of peptides and peptidomimetics are highly desirable in modern drug discovery. Transition-metal-catalyzed C-H functionalization is emerging as a powerful strategy for late-stage peptide modification that is able to construct functional groups or increase skeletal diversity. However, the installation of directing groups is necessary to control the site selectivity. In this work, we describe a transition metal-free strategy for late-stage peptide modification. In this strategy, a linear aliphatic side chain at the peptide N-terminus is cyclized to deliver a proline skeleton via site-selective δ-C(sp3)-H functionalization under visible light. Natural and unnatural amino acids are demonstrated as suitable substrates with the transformations proceeding with excellent regio- and stereo-selectivity.
Collapse
Affiliation(s)
- Yujie Han
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Junjie Shi
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Songrong Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Tingting Dan
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Wenwen Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Mingyu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| |
Collapse
|
11
|
McLaughlin MI, Yu Y, van der Donk WA. Substrate Recognition by the Peptidyl-( S)-2-mercaptoglycine Synthase TglHI during 3-Thiaglutamate Biosynthesis. ACS Chem Biol 2022; 17:930-940. [PMID: 35362960 PMCID: PMC9016710 DOI: 10.1021/acschembio.2c00087] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
3-Thiaglutamate is a recently identified amino acid analog originating from cysteine. During its biosynthesis, cysteinyl-tRNA is first enzymatically appended to the C-terminus of TglA, a 50-residue ribosomally translated peptide scaffold. After hydrolytic removal of the tRNA, this cysteine residue undergoes modification on the scaffold before eventual proteolysis of the nascent 3-thiaglutamyl residue to release 3-thiaglutamate and regenerate TglA. One of the modifications of TglACys requires a complex of two polypeptides, TglH and TglI, which uses nonheme iron and O2 to catalyze the removal of the peptidyl-cysteine β-methylene group, oxidation of this Cβ atom to formate, and reattachment of the thiol group to the α carbon. Herein, we use in vitro transcription-coupled translation and expressed protein ligation to characterize the role of the TglA scaffold in TglHI recognition and determine the specificity of TglHI with respect to the C-terminal residues of its substrate TglACys. The results of these experiments establish a synthetically accessible TglACys fragment sufficient for modification by TglHI and identify the l-selenocysteine analog of TglACys, TglASec, as an inhibitor of TglHI. These insights as well as a predicted structure and native mass spectrometry data set the stage for deeper mechanistic investigation of the complex TglHI-catalyzed reaction.
Collapse
Affiliation(s)
- Martin I. McLaughlin
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yue Yu
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Wenski SL, Thiengmag S, Helfrich EJ. Complex peptide natural products: Biosynthetic principles, challenges and opportunities for pathway engineering. Synth Syst Biotechnol 2022; 7:631-647. [PMID: 35224231 PMCID: PMC8842026 DOI: 10.1016/j.synbio.2022.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/03/2023] Open
Abstract
Complex peptide natural products exhibit diverse biological functions and a wide range of physico-chemical properties. As a result, many peptides have entered the clinics for various applications. Two main routes for the biosynthesis of complex peptides have evolved in nature: ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic pathways and non-ribosomal peptide synthetases (NRPSs). Insights into both bioorthogonal peptide biosynthetic strategies led to the establishment of universal principles for each of the two routes. These universal rules can be leveraged for the targeted identification of novel peptide biosynthetic blueprints in genome sequences and used for the rational engineering of biosynthetic pathways to produce non-natural peptides. In this review, we contrast the key principles of both biosynthetic routes and compare the different biochemical strategies to install the most frequently encountered peptide modifications. In addition, the influence of the fundamentally different biosynthetic principles on past, current and future engineering approaches is illustrated. Despite the different biosynthetic principles of both peptide biosynthetic routes, the arsenal of characterized peptide modifications encountered in RiPP and NRPS systems is largely overlapping. The continuous expansion of the biocatalytic toolbox of peptide modifying enzymes for both routes paves the way towards the production of complex tailor-made peptides and opens up the possibility to produce NRPS-derived peptides using the ribosomal route and vice versa.
Collapse
Affiliation(s)
- Sebastian L. Wenski
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| | - Sirinthra Thiengmag
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| | - Eric J.N. Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Grant-Mackie E, Williams ET, Harris PWR, Brimble MA. Aminovinyl Cysteine Containing Peptides: A Unique Motif That Imparts Key Biological Activity. JACS AU 2021; 1:1527-1540. [PMID: 34723257 PMCID: PMC8549060 DOI: 10.1021/jacsau.1c00308] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Natural products that contain distinctive chemical functionality can serve as useful starting points to develop Nature's compounds into viable therapeutics. Peptide natural products, an under-represented class of medicines, such as ribosomally synthesized and post-translationally modified peptides (RiPPs), often contain noncanonical amino acids and structural motifs that give rise to potent biological activity. However, these motifs can be difficult to obtain synthetically, thereby limiting the transition of RiPPs to the clinic. Aminovinyl cysteine containing peptides, which display potent antimicrobial or anticancer activity, possess an intricate C-terminal ring that is critical for bioactivity. To date, successful methods for the total chemical synthesis of such peptides are yet to be realized, although several advancements have been achieved. In this perspective, we review this burgeoning class of aminovinyl cysteine peptides and critically evaluate the chemical strategies to install the distinct aminovinyl cysteine motif.
Collapse
Affiliation(s)
- Emily
S. Grant-Mackie
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1132, New Zealand
| | - Elyse T. Williams
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1132, New Zealand
| | - Paul W. R. Harris
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1132, New Zealand
- School
of Biological Sciences, The University of
Auckland, 3b Symonds
Street, Auckland 1132, New Zealand
- The
Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1132, New Zealand
| | - Margaret A. Brimble
- School
of Chemical Sciences, The University of
Auckland, 23 Symonds Street, Auckland 1132, New Zealand
- School
of Biological Sciences, The University of
Auckland, 3b Symonds
Street, Auckland 1132, New Zealand
- The
Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3b Symonds Street, Auckland 1132, New Zealand
| |
Collapse
|
14
|
Second-generation DNA-encoded multiple display on a constant macrocyclic scaffold enabled by an orthogonal protecting group strategy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.09.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Saad H, Aziz S, Gehringer M, Kramer M, Straetener J, Berscheid A, Brötz‐Oesterhelt H, Gross H. Nocathioamides, Uncovered by a Tunable Metabologenomic Approach, Define a Novel Class of Chimeric Lanthipeptides. Angew Chem Int Ed Engl 2021; 60:16472-16479. [PMID: 33991039 PMCID: PMC8362196 DOI: 10.1002/anie.202102571] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Indexed: 12/16/2022]
Abstract
The increasing number of available genomes, in combination with advanced genome mining techniques, unveiled a plethora of biosynthetic gene clusters (BGCs) coding for ribosomally synthesized and post-translationally modified peptides (RiPPs). The products of these BGCs often represent an enormous resource for new and bioactive compounds, but frequently, they cannot be readily isolated and remain cryptic. Here, we describe a tunable metabologenomic approach that recruits a synergism of bioinformatics in tandem with isotope- and NMR-guided platform to identify the product of an orphan RiPP gene cluster in the genomes of Nocardia terpenica IFM 0406 and 0706T . The application of this tactic resulted in the discovery of nocathioamides family as a founder of a new class of chimeric lanthipeptides I.
Collapse
Affiliation(s)
- Hamada Saad
- Department of Pharmaceutical BiologyInstitute of Pharmaceutical SciencesUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
- Department of Phytochemistry and Plant SystematicsDivision of Pharmaceutical IndustriesNational Research CentreDokkiCairoEgypt
| | - Saefuddin Aziz
- Department of Pharmaceutical BiologyInstitute of Pharmaceutical SciencesUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
- Microbiology DepartmentBiology FacultyJenderal Soedirman UniversityPurwokertoIndonesia
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry Institute of Pharmaceutical SciencesUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Markus Kramer
- Institute of Organic ChemistryUniversity of TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Jan Straetener
- Department of Microbial Bioactive CompoundsInterfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Anne Berscheid
- Department of Microbial Bioactive CompoundsInterfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Heike Brötz‐Oesterhelt
- Department of Microbial Bioactive CompoundsInterfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenAuf der Morgenstelle 2872076TübingenGermany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight InfectionUniversity of TübingenTübingenGermany
| | - Harald Gross
- Department of Pharmaceutical BiologyInstitute of Pharmaceutical SciencesUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight InfectionUniversity of TübingenTübingenGermany
| |
Collapse
|
16
|
Liu D, Rubin GM, Dhakal D, Chen M, Ding Y. Biocatalytic synthesis of peptidic natural products and related analogues. iScience 2021; 24:102512. [PMID: 34041453 PMCID: PMC8141463 DOI: 10.1016/j.isci.2021.102512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peptidic natural products (PNPs) represent a rich source of lead compounds for the discovery and development of therapeutic agents for the treatment of a variety of diseases. However, the chemical synthesis of PNPs with diverse modifications for drug research is often faced with significant challenges, including the unavailability of constituent nonproteinogenic amino acids, inefficient cyclization protocols, and poor compatibility with other functional groups. Advances in the understanding of PNP biosynthesis and biocatalysis provide a promising, sustainable alternative for the synthesis of these compounds and their analogues. Here we discuss current progress in using native and engineered biosynthetic enzymes for the production of both ribosomally and nonribosomally synthesized peptides. In addition, we highlight new in vitro and in vivo approaches for the generation and screening of PNP libraries.
Collapse
Affiliation(s)
- Dake Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Garret M. Rubin
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Dipesh Dhakal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|