1
|
Goswami M, Toro-González M, Moon J, Davern S. Precision Atomistic Structures of Actinium-/Radium-/Barium-Doped Lanthanide Nanoconstructs for Radiotherapeutic Applications. ACS NANO 2024; 18:16577-16588. [PMID: 38885179 PMCID: PMC11223473 DOI: 10.1021/acsnano.3c13213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024]
Abstract
Lanthanide vanadate (LnVO4) nanoconstructs have generated considerable interest in radiotherapeutic applications as a medium for nanoscale-targeted drug delivery. For cancer treatment, LnVO4 nanoconstructs have shown promise in encapsulating and retaining radionuclides that emit alpha-particles. In this work, we examined the structure formation of LnVO4 nanoconstructs doped with actinium (Ac) and radium (Ra), both experimentally and using large-scale atomistic molecular dynamics simulations. LnVO4 nanoconstructs were synthesized via a precipitation method in aqueous media. The reaction conditions and elemental compositions were varied to control the structure, fluorescence properties, and size distribution of the LnVO4 nanoconstructs. LnVO4 nanoconstructs were characterized by X-ray diffraction, Raman spectroscopy, and fluorescence spectroscopy. Molecular dynamics simulations were performed to obtain a fundamental understanding of the structure-property relationship between radionuclides and LnVO4 nanoconstructs at the atomic length scale. Molecular dynamics simulations with well-established force field (FF) parameters show that Ra atoms tend to distribute across the nanoconstructs' surface in a broader coordination shell, while the Ac atoms are arranged inside a smaller coordination shell within the nanocluster. The Ba atoms prefer to self-assemble around the surface. These theoretical/simulation predictions of the atomistic structures and an understanding of the relationship between radionuclides and LnVO4 nanoconstructs at the atomic scale are important because they provide design principles for the future development of nanoconstructs for targeted radionuclide delivery.
Collapse
Affiliation(s)
- Monojoy Goswami
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Miguel Toro-González
- Radioisotope
Science & Technology Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jisue Moon
- Radioisotope
Science & Technology Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sandra Davern
- Radioisotope
Science & Technology Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
2
|
Encapsulation of 67Cu therapeutic radiometal in luminescent lanthanide phosphate core and core-shell nanoparticles. Appl Radiat Isot 2022; 186:110296. [DOI: 10.1016/j.apradiso.2022.110296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022]
|
3
|
Daly SR, Bellott BJ, McAlister DR, Horwitz EP, Girolami GS. Pr(H 3BNMe 2BH 3) 3 and Pr(thd) 3 as Volatile Carriers for Actinium-225. Deposition of Actinium-Doped Praseodymium Boride Thin Films for Potential Use in Brachytherapy. Inorg Chem 2022; 61:7217-7221. [PMID: 35510902 DOI: 10.1021/acs.inorgchem.2c00442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Here we show that the praseodymium N,N-dimethylaminodiboranate complex Pr(H3BNMe2BH3)3 and the 2,2,6,6-tetramethylheptane-3,5-dionate complex Pr(thd)3 can serve as volatile carriers for 225Ac. The actinium coordination complexes Ac(H3BNMe2BH3)3 and Ac(thd)3 are the likely species subliming with the carrier material. A sample of 225Ac-doped Pr(H3BNMe2BH3)3 was used to deposit amorphous 225Ac-doped praseodymium boride films on glass and Si(100) at 300 °C. The α emission spectra of the refractory films are well-resolved, suggesting that they could be used as radioactive implants for brachytherapy and related treatments.
Collapse
Affiliation(s)
- Scott R Daly
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States.,School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Brian J Bellott
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States.,Department of Chemistry, Western Illinois University, 214 Currens Hall, 1 University Circle, Macomb, Illinois 61455, United States
| | - Daniel R McAlister
- Eichrom Technologies, LLC, 1955 University Lane, Lisle, Illinois 60532, United States
| | - E Philip Horwitz
- Eichrom Technologies, LLC, 1955 University Lane, Lisle, Illinois 60532, United States
| | - Gregory S Girolami
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Karpov TE, Muslimov AR, Antuganov DO, Postovalova AS, Pavlov DA, Usov YV, Shatik SV, Zyuzin MV, Timin AS. Impact of metallic coating on the retention of 225Ac and its daugthers within core-shell nanocarriers. J Colloid Interface Sci 2022; 608:2571-2583. [PMID: 34801240 DOI: 10.1016/j.jcis.2021.10.187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 01/11/2023]
Abstract
Currently, alpha-emitting radionuclide 225Ac is one of the most promising isotopes in alpha therapy due to its high linear energy transfer during four sequential alpha decays. However, the main obstacle preventing the full introduction of 225Ac into clinical practice is the lack of stable retention of radionuclides, leading to free circulation of toxic isotopes in the body. In this work, the surface of silica nanoparticles (SiO2 NPs) has been modified with metallic shells composed of titanium dioxide (TiO2) and gold (Au) nanostructures to improve the retention of 225Ac and its decay products within the developed nanocarriers. In vitro and in vivo studies in healthy mice show that the metallic surface coating of SiO2 NPs promotes an enhanced sequestering of radionuclides (225Ac and its daughter isotopes) compared to non-modified SiO2 NPs for a prolonged period of time. Histological analysis reveals that for the period of 3-10 d after the injections, the developed nanocarriers have no significant toxic effects in mice. At the same time, almost no accumulation of leaked radionuclides can be detected in non-target organs (e.g., in the kidneys). In contrast, non-modified carriers (SiO2 NPs) demonstrate the release of free radionuclides, which are distributed over the whole animal body with the consequent morphological changes in the lung, liver and kidney tissues. These results highlight the potential of the developed nanocarriers to be utilized as radionuclide delivery systems and offer an insight into design rules for the fabrication of new nanotherapeutic agents.
Collapse
Affiliation(s)
- Timofey E Karpov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Albert R Muslimov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; St. Petersburg Academic University, Khlopin St. 8/3, St. Petersburg 194021, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Dmitrii O Antuganov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
| | - Alisa S Postovalova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Dmitri A Pavlov
- Lobachevsky University, 23/3 Gagarin prospect, Nizhny Novgorod 603950, Russian Federation
| | - Yuri V Usov
- Lobachevsky University, 23/3 Gagarin prospect, Nizhny Novgorod 603950, Russian Federation
| | - Sergey V Shatik
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
| | - Mikhail V Zyuzin
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Alexander S Timin
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation; Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russian Federation.
| |
Collapse
|
5
|
Effectively enhanced photoluminescence of CePO4:Tb3+ nanorods combined with carbon dots. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Tailoring the Radionuclide Encapsulation and Surface Chemistry of La(223Ra)VO4 Nanoparticles for Targeted Alpha Therapy. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The development of targeted alpha therapy (TAT) as a viable cancer treatment requires innovative solutions to challenges associated with radionuclide retention to enhance local tumor cytotoxicity and to minimize off-target effects. Nanoparticles (NPs) with high encapsulation and high retention of radionuclides have shown potential in overcoming these issues. This article shows the influence of pH on the structure of lanthanum vanadate (LaVO4) NPs and its impact on the radiochemical yield of 223Ra and subsequent retention of its decay daughters, 211Pb and 211Bi. An acidic pH (4.9) results in a high fraction of La(223Ra)VO4 NPs with tetragonal structure (44.6–66.1%) and a 223Ra radiochemical yield <40%. Adjusting the pH to 11 yields >80% of La(223Ra)VO4 NPs with monoclinic structure and increases the 223Ra radiochemical yield >85%. The leakage of decay daughters from La(223Ra)VO4 NPs (pH 11) was <5% and <0.5% when exposed to deionized water and phosphate-buffered saline, respectively. Altering the surface chemistry of La(223Ra)VO4 NPs with carboxylate and phosphate compounds resulted in a threefold decrease in hydrodynamic diameter and a 223Ra radiochemical yield between 74.7% and 99.6%. These results show the importance of tailoring the synthesis parameters and surface chemistry of LaVO4 NPs to obtain high encapsulation and retention of radionuclides.
Collapse
|