1
|
Zhao H, Yan F. Retinal Organoids: A Next-Generation Platform for High-Throughput Drug Discovery. Stem Cell Rev Rep 2024; 20:495-508. [PMID: 38079086 PMCID: PMC10837228 DOI: 10.1007/s12015-023-10661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 02/03/2024]
Abstract
Retinal diseases are leading causes of blindness globally. Developing new drugs is of great significance for preventing vision loss. Current drug discovery relies mainly on two-dimensional in vitro models and animal models, but translation to human efficacy and safety is biased. In recent years, the emergence of retinal organoid technology platforms, utilizing three-dimensional microenvironments to better mimic retinal structure and function, has provided new platforms for exploring pathogenic mechanisms and drug screening. This review summarizes the latest advances in retinal organoid technology, emphasizing its application advantages in high-throughput drug screening, efficacy and toxicity evaluation, and translational medicine research. The review also prospects the combination of emerging technologies such as organ-on-a-chip, 3D bioprinting, single cell sequencing, gene editing with retinal organoid technology, which is expected to further optimize retinal organoid models and advance the diagnosis and treatment of retinal diseases.
Collapse
Affiliation(s)
- Hongkun Zhao
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, Yunnan, China
| | - Fei Yan
- Department of Pathology and Pathophysiology, Faculty of Basic Medicine School, Kunming Medical University, 1168 Yuhua Street, Chunrong West Road, Chenggong District, Kunming, Yunnan, 650500, China.
| |
Collapse
|
2
|
Rahimi Darehbagh R, Mahmoodi M, Amini N, Babahajiani M, Allavaisie A, Moradi Y. The effect of nanomaterials on embryonic stem cell neural differentiation: a systematic review. Eur J Med Res 2023; 28:576. [PMID: 38071365 PMCID: PMC10709835 DOI: 10.1186/s40001-023-01546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Humans' nervous system has a limited ability to repair nerve cells, which poses substantial challenges in treating injuries and diseases. Stem cells are identified by the potential to renew their selves and develop into several cell types, making them ideal candidates for cell replacement in injured neurons. Neuronal differentiation of embryonic stem cells in modern medicine is significant. Nanomaterials have distinct advantages in directing stem cell function and tissue regeneration in this field. We attempted in this systematic review to collect data, analyze them, and report results on the effect of nanomaterials on neuronal differentiation of embryonic stem cells. METHODS International databases such as PubMed, Scopus, ISI Web of Science, and EMBASE were searched for available articles on the effect of nanomaterials on neuronal differentiation of embryonic stem cells (up to OCTOBER 2023). After that, screening (by title, abstract, and full text), selection, and data extraction were performed. Also, quality assessment was conducted based on the STROBE checklist. RESULTS In total, 1507 articles were identified and assessed, and then only 29 articles were found eligible to be included. Nine studies used 0D nanomaterials, ten used 1D nanomaterials, two reported 2D nanomaterials, and eight demonstrated the application of 3D nanomaterials. The main biomaterial in studies was polymer-based composites. Three studies reported the negative effect of nanomaterials on neural differentiation. CONCLUSION Neural differentiation is crucial in neurological regenerative medicine. Nanomaterials with different characteristics, particularly those cellular regulating activities and stem cell fate, have much potential in neural tissue engineering. These findings indicate a new understanding of potential applications of physicochemical cues in nerve tissue engineering.
Collapse
Affiliation(s)
- Ramyar Rahimi Darehbagh
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Nanoclub Elites Association, Tehran, Iran
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mozaffar Mahmoodi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Molecular Medicine, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nader Amini
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Media Babahajiani
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Azra Allavaisie
- Department of Anatomical Sciences, School of Medicine, Sanandaj, Iran
| | - Yousef Moradi
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
3
|
Daou B, Silvestri A, Lasa H, Mancino D, Prato M, Alegret N. Organic Functional Group on Carbon Nanotube Modulates the Maturation of SH-SY5Y Neuronal Models. Macromol Biosci 2023; 23:e2300173. [PMID: 37392465 DOI: 10.1002/mabi.202300173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
Carbon nanotubes (CNT) have proven to be excellent substrates for neuronal cultures, showing high affinity and greatly boosting their synaptic functionality. Therefore, growing cells on CNT offers an opportunity to perform a large variety of neuropathology studies in vitro. To date, the interactions between neurons and chemical functional groups have not been studied extensively. To this end, multiwalled CNT (f-CNT) is functionalized with various functional groups, including sulfonic (-SO3 H), nitro (-NO2 ), amino (-NH2 ), and oxidized moieties. f-CNTs are spray-coated onto untreated glass substrates and are used as substrates for the incubation of neuroblastoma cells (SH-SY5Y). After 7 d, its effect is evaluated in terms of cell attachment, survival, growth, and spontaneous differentiation. Cell viability assays show quite increased proliferation on various f-CNT substrates (CNTs-NO2 > ox-CNTs ≈ CNTs-SO3 H > CNTs ≈ CNTs-NH2 ). Additionally, SH-SY5Y cells show selectively better differentiation and maturation with -SO3 H substrates, where an increased expression of β-III tubulin is seen. In all cases, intricate cell-CNT networks are observed and the morphology of the cells adopts longer and thinner cellular processes, suggesting that the type of functionalization may have an effect of the length and thickness. Finally, a possible correlation is determined between conductivity of f-CNTs and cell-processes lengths.
Collapse
Affiliation(s)
- Bahaa Daou
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, Donostia/San Sebastián, 20014, Spain
| | - Alessandro Silvestri
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| | - Haizpea Lasa
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, Donostia/San Sebastián, 20014, Spain
| | - Donato Mancino
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
- Department of Chemical and Pharmaceutical Sciences, Universitá Degli Studi di Trieste, Trieste, 34127, Italy
| | - Nuria Alegret
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| |
Collapse
|
4
|
Wysokowski M, Machałowski T, Idaszek J, Chlanda A, Jaroszewicz J, Heljak M, Niemczak M, Piasecki A, Gajewska M, Ehrlich H, Święszkowski W, Jesionowski T. Deep eutectic solvent-assisted fabrication of bioinspired 3D carbon-calcium phosphate scaffolds for bone tissue engineering. RSC Adv 2023; 13:21971-21981. [PMID: 37483675 PMCID: PMC10358318 DOI: 10.1039/d3ra02356g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023] Open
Abstract
Tissue engineering is a burgeoning field focused on repairing damaged tissues through the combination of bodily cells with highly porous scaffold biomaterials, which serve as templates for tissue regeneration, thus facilitating the growth of new tissue. Carbon materials, constituting an emerging class of superior materials, are currently experiencing remarkable scientific and technological advancements. Consequently, the development of novel 3D carbon-based composite materials has become significant for biomedicine. There is an urgent need for the development of hybrids that will combine the unique bioactivity of ceramics with the performance of carbonaceous materials. Considering these requirements, herein, we propose a straightforward method of producing a 3D carbon-based scaffold that resembles the structural features of spongin, even on the nanometric level of their hierarchical organization. The modification of spongin with calcium phosphate was achieved in a deep eutectic solvent (choline chloride : urea, 1 : 2). The holistic characterization of the scaffolds confirms their remarkable structural features (i.e., porosity, connectivity), along with the biocompatibility of α-tricalcium phosphate (α-TCP), rendering them a promising candidate for stem cell-based tissue-engineering. Culturing human bone marrow mesenchymal stem cells (hMSC) on the surface of the biomimetic scaffold further verifies its growth-facilitating properties, promoting the differentiation of these cells in the osteogenesis direction. ALP activity was significantly higher in osteogenic medium compared to proliferation, indicating the differentiation of hMSC towards osteoblasts. However, no significant difference between C and C-αTCP in the same medium type was observed.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology Poznan 60-965 Poland
| | - Tomasz Machałowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology Poznan 60-965 Poland
| | - Joanna Idaszek
- Faculty of Materials Science and Engineering, Warsaw University of Technology Warsaw 02-507 Poland
| | - Adrian Chlanda
- Lukasiewicz Research Network - Institute of Microelectronics and Photonics, Flake Graphene Research Group 02-668 Warsaw Poland
| | - Jakub Jaroszewicz
- Faculty of Materials Science and Engineering, Warsaw University of Technology Warsaw 02-507 Poland
| | - Marcin Heljak
- Faculty of Materials Science and Engineering, Warsaw University of Technology Warsaw 02-507 Poland
| | - Michał Niemczak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology Poznan 60-965 Poland
| | - Adam Piasecki
- Institute of Materials Engineering, Poznan University of Technology Piotrowo 3 61138 Poznan Poland
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology Mickiewicza 30 30-059 Kraków Poland
| | - Hermann Ehrlich
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology Poznan 60-965 Poland
- Center for Advanced Technologies, Adam Mickiewicz University Uniwersytetu Poznanskiego 10 61-614 Poznan Poland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology Warsaw 02-507 Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology Poznan 60-965 Poland
| |
Collapse
|
5
|
Vitus V, Ibrahim F, Wan Kamarul Zaman WS. Modelling of Stem Cells Microenvironment Using Carbon-Based Scaffold for Tissue Engineering Application-A Review. Polymers (Basel) 2021; 13:4058. [PMID: 34883564 PMCID: PMC8658938 DOI: 10.3390/polym13234058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
A scaffold is a crucial biological substitute designed to aid the treatment of damaged tissue caused by trauma and disease. Various scaffolds are developed with different materials, known as biomaterials, and have shown to be a potential tool to facilitate in vitro cell growth, proliferation, and differentiation. Among the materials studied, carbon materials are potential biomaterials that can be used to develop scaffolds for cell growth. Recently, many researchers have attempted to build a scaffold following the origin of the tissue cell by mimicking the pattern of their extracellular matrix (ECM). In addition, extensive studies were performed on the various parameters that could influence cell behaviour. Previous studies have shown that various factors should be considered in scaffold production, including the porosity, pore size, topography, mechanical properties, wettability, and electroconductivity, which are essential in facilitating cellular response on the scaffold. These interferential factors will help determine the appropriate architecture of the carbon-based scaffold, influencing stem cell (SC) response. Hence, this paper reviews the potential of carbon as a biomaterial for scaffold development. This paper also discusses several crucial factors that can influence the feasibility of the carbon-based scaffold architecture in supporting the efficacy and viability of SCs.
Collapse
Affiliation(s)
- Vieralynda Vitus
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (V.V.); (F.I.)
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (V.V.); (F.I.)
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Printable Electronics, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (V.V.); (F.I.)
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|