1
|
Tian Z, Fu Y, Dang Z, Guo T, Li W, Zhang J. Utilizing Nanomaterials in Microfluidic Devices for Disease Detection and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:434. [PMID: 40137607 PMCID: PMC11946687 DOI: 10.3390/nano15060434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025]
Abstract
Microfluidic technology has gained widespread application in the field of biomedical research due to its exceptional sensitivity and high specificity. Particularly when combined with nanomaterials, the synergy between the two has significantly advanced fields such as precision medicine, drug delivery, disease detection, and treatment. This article aims to provide an overview of the latest research achievements of microfluidic nanomaterials in disease detection and treatment. It delves into the applications of microfluidic nanomaterials in detecting blood parameters, cardiovascular disease markers, neurological disease markers, and tumor markers. Special emphasis is placed on their roles in disease treatment, including models such as blood vessels, the blood-brain barrier, lung chips, and tumors. The development of microfluidic nanomaterials in emerging medical technologies, particularly in skin interactive devices and medical imaging, is also introduced. Additionally, the challenges and future prospects of microfluidic nanomaterials in current clinical applications are discussed. In summary, microfluidic nanomaterials play an indispensable role in disease detection and treatment. With the continuous advancement of technology, their applications in the medical field will become even more profound and extensive.
Collapse
Affiliation(s)
- Zhibiao Tian
- College of Basic Medicine, Hebei University, Baoding 071000, China; (Z.T.); (Z.D.)
| | - Yatian Fu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China;
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Zhiyong Dang
- College of Basic Medicine, Hebei University, Baoding 071000, China; (Z.T.); (Z.D.)
| | - Tao Guo
- College of Basic Medicine, Hebei University, Baoding 071000, China; (Z.T.); (Z.D.)
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding 071000, China
| | - Wenjuan Li
- College of Basic Medicine, Hebei University, Baoding 071000, China; (Z.T.); (Z.D.)
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding 071000, China
| | - Jing Zhang
- College of Basic Medicine, Hebei University, Baoding 071000, China; (Z.T.); (Z.D.)
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding 071000, China
| |
Collapse
|
2
|
Wang W, Wang Y, Zhang D, Guo G, Wang L, Wang X. Kinetically Controlled Nucleation Enabled by Tunable Microfluidic Mixing for the Synthesis of Dendritic Au@Pt Core/Shell Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2302589. [PMID: 37967327 DOI: 10.1002/smll.202302589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/05/2023] [Indexed: 11/17/2023]
Abstract
The nucleation stage plays a decisive role in determining nanocrystal morphology and properties; hence, the ability to regulate nucleation is critical for achieving high-level control. Herein, glass microfluidic chips with S-shaped mixing units are designed for the synthesis of Au@Pt core/shell materials. The use of hydrodynamics to tune the nucleation kinetics is explored by varying the number of mixing units. Dendritic Au@Pt core/shell nanomaterials are controllably synthesized and a formation mechanism is proposed. As-synthesized Au@Pt exhibited excellent ethanol oxidation activity under alkaline conditions (8.4 times that of commercial Pt/C). This approach is also successfully applied to the synthesize of Au@Pd core/shell nanomaterials, thus demonstrating its generality.
Collapse
Affiliation(s)
- Wubin Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, China
| | - Yacheng Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, China
| | - Dongtang Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, China
| | - Guangsheng Guo
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, China
- Minzu University of China, Beijing, 100081, China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
3
|
Wang D, Zhang D, Wang Y, Guo G, Wang X, Sun Y. Spontaneous Phase Segregation Enabling Clogging Aversion in Continuous Flow Microfluidic Synthesis of Nanocrystals Supported on Reduced Graphene Oxide. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4315. [PMID: 36500939 PMCID: PMC9738359 DOI: 10.3390/nano12234315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Eliminating clogging in capillary tube reactors is critical but challenging for enabling continuous-flow microfluidic synthesis of nanoparticles. Creating immiscible segments in a microfluidic flow is a promising approach to maintaining a continuous flow in the microfluidic channel because the segments with low surface energy do not adsorb onto the internal wall of the microchannel. Herein we report the spontaneous self-agglomeration of reduced graphene oxide (rGO) nanosheets in polyol flow, which arises because the reduction of graphene oxide (GO) nanosheets by hot polyol changes the nanosheets from hydrophilic to hydrophobic. The agglomerated rGO nanosheets form immiscible solid segments in the polyol flow, realizing the liquid-solid segmented flow to enable clogging aversion in continuous-flow microfluidic synthesis. Simultaneous reduction of precursor species in hot polyol deposits nanocrystals uniformly dispersed on the rGO nanosheets even without surfactant. Cuprous oxide (Cu2O) nanocubes of varying edge lengths and ultrafine metal nanoparticles of platinum (Pt) and palladium (Pd) dispersed on rGO nanosheets have been continuously synthesized using the liquid-solid segmented flow microfluidic method, shedding light on the promise of microfluidic reactors in synthesizing functional nanomaterials.
Collapse
Affiliation(s)
- Dumei Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Dongtang Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Yanan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Guangsheng Guo
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
- Minzu University of China, Beijing 100081, China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China
| | - Yugang Sun
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA 19122, USA
| |
Collapse
|
4
|
Niculescu AG, Mihaiescu DE, Grumezescu AM. A Review of Microfluidic Experimental Designs for Nanoparticle Synthesis. Int J Mol Sci 2022; 23:8293. [PMID: 35955420 PMCID: PMC9368202 DOI: 10.3390/ijms23158293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Microfluidics is defined as emerging science and technology based on precisely manipulating fluids through miniaturized devices with micro-scale channels and chambers. Such microfluidic systems can be used for numerous applications, including reactions, separations, or detection of various compounds. Therefore, due to their potential as microreactors, a particular research focus was noted in exploring various microchannel configurations for on-chip chemical syntheses of materials with tailored properties. Given the significant number of studies in the field, this paper aims to review the recently developed microfluidic devices based on their geometry particularities, starting from a brief presentation of nanoparticle synthesis and mixing within microchannels, further moving to a more detailed discussion of different chip configurations with potential use in nanomaterial fabrication.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|
5
|
Kusada K, Kitagawa H. Continuous-flow syntheses of alloy nanoparticles. MATERIALS HORIZONS 2022; 9:547-558. [PMID: 34812460 DOI: 10.1039/d1mh01413g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alloy nanoparticles (NPs), including core-shell, segregated and solid-solution types, show a variety of attractive properties such as catalytic and optical properties and are used in a wide range of applications. Precise control and good reproducibility in the syntheses of alloy NPs are highly demanded because these properties are tunable by controlling alloy structures, compositions, particle sizes, and so on. To improve the efficiency and reproducibility of their syntheses, continuous-flow syntheses with various types of reactors have recently been developed instead of the current mainstream approach, batch syntheses. In this review, we focus on the continuous-flow syntheses of alloy NPs and first overview the flow syntheses of NPs, especially of alloy NPs. Subsequently, the details of flow reactors and their chemistry to synthesize core-shell, segregated, solid-solution types of alloy NPs, and high-entropy alloy NPs are introduced. Finally, the challenges and future perspectives in this field are discussed.
Collapse
Affiliation(s)
- Kohei Kusada
- The Hakubi Centre for Advanced Research, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|