1
|
Zheng S, Dong J, Chen Q, Wu M, Zhu D, Cui L, Corvini PFX, Li HZ, Pan B. Elevated Toxicity and High-Risk Impacts of Small Polycyclic Aromatic Hydrocarbon Clusters on Microbes Compared to Large Clusters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:224-233. [PMID: 39723607 DOI: 10.1021/acs.est.4c10078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread contaminants that can accumulate in microorganisms, posing significant ecological risks. While previous studies primarily focused on PAH concentrations, the impacts of PAH self-clustering have been largely overlooked, which will lead to inaccurate assessments of their ecological risks. This study evaluates the toxic effects of four prevalent PAH clusters on microbes with an emphasis on comparing the cluster sizes. Results revealed that over 95% of PAHs can form clusters in the aquatic environment, with smaller clusters more likely to form at lower concentrations and with fewer benzene rings. To quantify the toxic effects and understand underlying mechanisms, single-cell Raman-D2O was employed to link bacterial phenotypes with transcriptomic profiles. Bacteria exposed to smaller PAH clusters showed a 1%-10% reduction in metabolic activity, which was associated with a 1.8-2.9-fold increase in intracellular reactive oxygen species (ROS). Furthermore, when exposed to smaller PAH clusters, the expression of genes related to the ROS response and efflux pumps was upregulated by up to 6.33-fold and 4.97-fold, respectively, suggesting that smaller PAH clusters pose greater toxicity to microbes. These findings underscore the potentially overlooked risks of PAH clusters in environmental systems and deepen our understanding of the environmental fate and ecological risks of these contaminants.
Collapse
Affiliation(s)
- Shuyue Zheng
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan China
| | - Jihong Dong
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan China
| | - Quan Chen
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan China
| | - Min Wu
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian China
| | - Philippe Frangois-Xavier Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, 4132, Muttenz, Switzerland
| | - Hong-Zhe Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian China
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan China
| |
Collapse
|
2
|
You T, Feng X, Xu H. The whole life journey and destination of microplastics: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125165. [PMID: 39427952 DOI: 10.1016/j.envpol.2024.125165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Recent reports indicate that ubiquitous microplastics (MPs) in the environment can infiltrate the human body, posing significant health risks and garnering widespread attention. However, public understanding of the intricate processes through which microplastics are transferred to humans remains limited. Consequently, developing effective strategies to mitigate the escalating issue of MPs pollution and safeguard human health is still challenging. In this review, we elucidated the sources and dynamic migration pathways of MPs, examined its complex interactions with other pollutants, and identified primary routes of human exposure. Subsequently, the events and alterations of gut microbiota, gut microbiota metabolism, and intestinal barrier after MPs enter the gut of organisms are unclosed. Additionally, it highlighted the ease with which MPs translocate from the intestine to other organs along with their biological toxicities. Finally, we also emphasized the knowledge gaps in the current research field and proposes future research directions. This review aims to enhance public awareness regarding microplastic pollution and provide valuable references for forthcoming research endeavors as well as policy formulation related to this pressing issue.
Collapse
Affiliation(s)
- Tao You
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
| |
Collapse
|
3
|
Gou Z, Wu H, Li S, Liu Z, Zhang Y. Airborne micro- and nanoplastics: emerging causes of respiratory diseases. Part Fibre Toxicol 2024; 21:50. [PMID: 39633457 PMCID: PMC11616207 DOI: 10.1186/s12989-024-00613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Airborne micro- and nanoplastics (AMNPs) are ubiquitously present in human living environments and pose significant threats to respiratory health. Currently, much research has been conducted on the relationship between micro- and nanoplastics (MNPs) and cardiovascular and gastrointestinal diseases, yet there is a clear lack of understanding regarding the link between AMNPs and respiratory diseases. Therefore, it is imperative to explore the relationship between the two. Recent extensive studies by numerous scholars on the characteristics of AMNPs and their relationship with respiratory diseases have robustly demonstrated that AMNPs from various sources significantly influence the onset and progression of respiratory conditions. Thus, investigating the intrinsic mechanisms involved and finding necessary preventive and therapeutic measures are crucial. In this review, we primarily describe the fundamental characteristics of AMNPs, their impact on the respiratory system, and the intrinsic toxic mechanisms that facilitate disease development. It is hoped that this article will provide new insights for further research and contribute to the advancement of human health.
Collapse
Affiliation(s)
- Zixuan Gou
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Haonan Wu
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Shanyu Li
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Ziyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China.
| | - Ying Zhang
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China.
- Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Wang PX, Wu SL, Ju JQ, Jiao L, Zou YJ, Zhang KH, Sun SC, Hu LL, Zheng XB. Benzo[a]pyrene exposure disrupts the organelle distribution and function of mouse oocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116630. [PMID: 38917590 DOI: 10.1016/j.ecoenv.2024.116630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/22/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon compound that is generated during combustion processes, and is present in various substances such as foods, tobacco smoke, and burning emissions. BaP is extensively acknowledged as a highly carcinogenic substance to induce multiple forms of cancer, such as lung cancer, skin cancer, and stomach cancer. Recently it is shown to adversely affect the reproductive system. Nevertheless, the potential toxicity of BaP on oocyte quality remains unclear. In this study, we established a BaP exposure model via mouse oral gavage and found that BaP exposure resulted in a notable decrease in the ovarian weight, number of GV oocytes in ovarian, and oocyte maturation competence. BaP exposure caused ribosomal dysfunction, characterized by a decrease in the expression of RPS3 and HPG in oocytes. BaP exposure also caused abnormal distribution of the endoplasmic reticulum (ER) and induced ER stress, as indicated by increased expression of GRP78. Besides, the Golgi apparatus exhibited an abnormal localization pattern, which was confirmed by the GM130 localization. Disruption of vesicle transport processes was observed by the abnormal expression and localization of Rab10. Additionally, an enhanced lysosome and LC3 fluorescence intensity indicated the occurrence of protein degradation in oocytes. In summary, our results suggested that BaP exposure disrupted the distribution and functioning of organelles, consequently affecting the developmental competence of mouse oocytes.
Collapse
Affiliation(s)
- Peng-Xia Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, Nanning 530004, China
| | - Si-Le Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Jiao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun-Huan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin-Lin Hu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Xi-Bang Zheng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Li J, You L, Xu Z, Gin KYH, He Y. Nano-scale and micron-scale plastics amplify the bioaccumulation of benzophenone-3 and ciprofloxacin, as well as their co-exposure effect on disturbing the antioxidant defense system in mussels, Perna viridis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123547. [PMID: 38387549 DOI: 10.1016/j.envpol.2024.123547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Plastics ranging from nano-scale to micron-scale are frequently ingested by many marine animals. These particles exhibit biotoxicity and additionally perform as vectors that convey and amass adsorbed chemicals within organisms. Meanwhile, the frequency of detection of the benzophenone-3 and ciprofloxacin can be adsorbed on plastic particles, then accumulated in bivalves, causing biotoxicity. To understand their unknown accumulative kinetics in vivo affected by different plastic sizes and toxic effect from co-exposure, several scenarios were set up in which the mode organism were exposed to 0.6 mg/L of polystyrene carrying benzophenone-3 and ciprofloxacin in three sizes (300 nm, 38 μm, and 0.6 mm). The live Asian green mussels were chosen as mode organism for exposure experiments, in which they were exposed to environments with plastics of different sizes laden with benzophenone-3 and ciprofloxacin, then depurated for 7 days. The bioaccumulation and depuration kinetics of benzophenone-3 and ciprofloxacin were measured using HPLC-MS/MS after one week of exposure and depuration. Meanwhile, their toxic effect were investigated by measuring the changes in six biomarkers (condition index, reactive oxygen species, catalase, glutathione, lipid peroxidation, cytochrome P450 and DNA damage). The bioconcentration factors in mussels under different exposure conditions were 41.48-111.75 for benzophenone-3 and 6.45 to 12.35 for ciprofloxacin. The results suggested that microplastics and nanoplastics can act as carriers to increase bioaccumulation and toxicity of adsorbates in mussels in a size-dependent manner. Overproduction of reactive oxygen species caused by microplastics and nanoplastics led to increased DNA damage, lipid peroxidation, and changes in antioxidant enzymes and non-enzymatic antioxidants during exposure. Marked disruption of antioxidant defenses and genotoxic effects in mussels during depuration indicated impaired recovery. Compared to micron-scale plastic with sizes over a hundred micrometers that had little effect on bivalve bioaccumulation and toxicity, nano-scale plastic greatly enhanced the biotoxicity effect.
Collapse
Affiliation(s)
- Junnan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Energy and Environmental Sustainability Solutions for Megacities, Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore
| | - Luhua You
- National University of Singapore Environment Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities, Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore
| | - Zichen Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Karina Yew-Hoong Gin
- National University of Singapore Environment Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Block E1A07-03, 1 Engineering Drive 2, Singapore 117576, Singapore; Energy and Environmental Sustainability Solutions for Megacities, Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National University of Singapore Environment Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities, Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore.
| |
Collapse
|
6
|
Liu L, Du R, Niu L, Li P, Li ZH. A Latest Review on Micro- and Nanoplastics in the Aquatic Environment: The Comparative Impact of Size on Environmental Behavior and Toxic Effect. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:36. [PMID: 38353741 DOI: 10.1007/s00128-024-03865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Micro and nanoplastics (MNPs) have attracted growing global research attention due to their distinct environmental impacts, addressing escalating concerns. The diverse materials, sizes, and shapes of MNPs result in a range of environmental impacts. Size, a crucial characteristic of MNPs, influences their environmental behavior, affecting processes like migration, sedimentation, aggregation, and adsorption. Moreover, size modulates the biodistribution and toxicity of MNPs in aquatic organisms. This review delves into the comprehensive impacts of plastic size, with a primary focus on environmental behavior and toxic effects. Ultimately, this review emphasizes the ecological implications of MNP size, laying a foundation for future research in this field.
Collapse
Affiliation(s)
- Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Renyan Du
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Linjing Niu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
7
|
Tan Z, Deng H, Ou H, Wu X, Liao Z, Ou H. Interfacial quantum chemical characterization of aromatic organic matter adsorption on oxidized microplastic surfaces. CHEMOSPHERE 2024; 350:141132. [PMID: 38184084 DOI: 10.1016/j.chemosphere.2024.141132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Examining the adsorption efficiency of individual contaminants on microplastics (MPs) is resource-intensive and time-consuming. To address this challenge, combined laboratory adsorption experiments with model simulations were performed to investigate the adsorption capacities and mechanisms of MPs before and after aging. Our adsorption experiments revealed that aged polyethylene (PE) and polyvinyl chloride (PVC) MPs exhibited increased adsorption capacity for benzene, phenol, and naphthalene. Additionally, density functional theory (DFT) simulations provided insights into changes in adsorption sites, adsorption energy, and charge density on MPs. The π bond of the benzene ring emerged as a pivotal factor in the adsorption process, with van der Waals forces exerting dominant influence. For instance, the adsorption energy of benzene on pristine PE was -0.01879 eV. When oxidized groups, such as hydroxyl, carbonyl, and carboxyl, on the surface of aged PE became the adsorption sites, the adsorption energy increased to -0.06976, -0.04781, and -0.04903 eV, respectively. Regions with unoxidized functional groups also exhibited higher adsorption energies than pristine PE. These results indicated that aged PE had a stronger affinity for benzene compared to pristine PE, enhancing its adsorption. Charge density difference and energy density of states corroborated this observation, revealing larger π-bond charge accumulation areas for benzene on aged PE, suggesting stronger dipole interactions and enhanced adsorption. Similar trends were observed for phenol and naphthalene. In summary, the DFT calculations aligned with the adsorption experiment findings, confirming the effectiveness of simulation methods in predicting changes in the adsorption performance of aged MPs.
Collapse
Affiliation(s)
- Zongyi Tan
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 511443, China; Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 511443, China
| | - Haiyang Deng
- CECEP Construction Engineering Design Institute Limited Company, Chengdu 610052, China
| | - Huali Ou
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 511443, China; Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 511443, China
| | - Xinni Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 511443, China
| | - Zhianqi Liao
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 511443, China
| | - Huase Ou
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou 511443, China; Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
8
|
Zhang Y, Jia Z, Gao X, Zhao J, Zhang H. Polystyrene nanoparticles induced mammalian intestine damage caused by blockage of BNIP3/NIX-mediated mitophagy and gut microbiota alteration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168064. [PMID: 37884137 DOI: 10.1016/j.scitotenv.2023.168064] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 10/01/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Nanoplastics possess the capacity for cellular internalization, and consequentially disrupt mitochondrial functionality, precipitating aberrations in energy metabolism. Given this, the potential accumulation of nanoplastics in alimentary sources presents a considerable hazard to the mammalian gastrointestinal system. While mitophagy serves as a cytoprotective mechanism that sustains redox homeostasis through the targeted removal of compromised mitochondria, the regulatory implications of mitophagy in nanoplastic-induced toxicity remain an underexplored domain. In the present investigation, polystyrene (PS) nanoparticles, with a diameter of 80 nm employed as a representative model to assess their toxicological impact and propensity to instigate mitophagy in intestinal cells both in vitro and in vivo. Data indicated that PS nanoparticles elicited BNIP3/NIX-mediated mitophagy within the intestinal milieu. Strikingly, the impediment of this degradation process at elevated concentrations was correlated with exacerbated pathological ramifications. In vitro assays corroborated that high-dosage cellular uptake of PS nanoparticles obstructed the mitophagy pathway. Furthermore, treatment with PS nanoparticles engendered alterations in gut microbiota composition and manifested a proclivity to modulate nutritional metabolism. Collectively, these findings elucidate that oral exposure to PS nanoparticles culminates in the inhibition of mitophagy and induces perturbations in the intestinal microbiota. This contributes valuable insights into the toxicological repercussions of nanoplastics on mammalian gastrointestinal health.
Collapse
Affiliation(s)
- Yilun Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xianlei Gao
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Juan Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
9
|
He L, Lu Z, Zhang Y, Yan L, Ma L, Dong X, Wu Z, Dai Z, Tan B, Sun R, Sun S, Li C. The effect of polystyrene nanoplastics on arsenic-induced apoptosis in HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115814. [PMID: 38100851 DOI: 10.1016/j.ecoenv.2023.115814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Microplastics are detrimental to the environment. However, the combined effects of microplastics and arsenic (As) remain unclear. In this study, we investigated the combined effects of polystyrene (PS) microplastics and As on HepG2 cells. The results showed that PS microplastics 20, 50, 200, and 500 nm in size were taken up by HepG2 cells, causing a decrease in cellular mitochondrial membrane potential. The results of lactate dehydrogenase release and flow cytometry showed that PS microplastics, especially those of 50 nm, enhanced As-induced apoptosis. In addition, transcriptome analysis revealed that TP53, AKT1, CASP3, ACTB, BCL2L1, CASP8, XIAP, MCL1, NFKBIA, and CASP7 were the top 10 hub genes for PS that enhanced the role of As in HepG2 cell apoptosis. Our results suggest that nano-PS enhances As-induced apoptosis. Furthermore, this study is important for a better understanding of the role of microplastics in As-induced hepatotoxicity.
Collapse
Affiliation(s)
- Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zifan Lu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Yuanyuan Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Linhong Yan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Lihua Ma
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Xiaoling Dong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Zijie Wu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhenqing Dai
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China; Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Baoyi Tan
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China; Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
10
|
Wang H, Liu B, Chen H, Xu P, Xue H, Yuan J. Dynamic changes of DNA methylation induced by benzo(a)pyrene in cancer. Genes Environ 2023; 45:21. [PMID: 37391844 DOI: 10.1186/s41021-023-00278-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
Benzo(a)pyrene (BaP), the earliest and most significant carcinogen among polycyclic aromatic hydrocarbons (PAHs), has been found in foods, tobacco smoke, and automobiles exhaust, etc. Exposure to BaP induced DNA damage directly, or oxidative stress-related damage, resulting in cell apoptosis and carcinogenesis in human respiratory system, digestive system, reproductive system, etc. Moreover, BaP triggered genome-wide epigenetic alterations by methylation, which might cause disturbances in regulation of gene expression, and thereby induced cancer. It has been proved that BaP reduced genome-wide DNA methylation, and activated proto-oncogene by hypomethylation in the promoter region, but silenced tumor suppressor genes by promoter hypermethylation, resulting in cancer initiation and progression. Here we summarized the changes in DNA methylation in BaP exposure, and revealed the methylation of DNA plays a role in cancer development.
Collapse
Affiliation(s)
- Huizeng Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Bingchun Liu
- Stem Cell Research Center, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Hong Chen
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Peixin Xu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Huiting Xue
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010010, China.
| | - Jianlong Yuan
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| |
Collapse
|
11
|
Fu J, Liu N, Peng Y, Wang G, Wang X, Wang Q, Lv M, Chen L. An ultra-light sustainable sponge for elimination of microplastics and nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131685. [PMID: 37257263 DOI: 10.1016/j.jhazmat.2023.131685] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
The currently established tools and materials for elimination of the emerging contaminants from environmental and food matrices, particularly micro- and nano-scale plastics, have been largely limited by complicated preparation/operation, high cost, and poor degradability. Here we show that, crosslinking naturally occurring corn starch and gelatin produces ultralight porous sponge upon freeze-drying that can be readily enzymatically decomposed to glucose; The sponge affords capture of micro- and nano-scale plastics into its pores by simple pressing in an efficiency up to 90% while preserving excellent mechanical strength. Heterogeneous diffusion was found to play a dominant role in the adsorption of microplastics by the starch-gelatin sponge. Investigations into the performance of the sponge in complex matrices including tap water, sea water, soil surfactant, and take-out dish soup, further reveal a considerably high removal efficiency (60%∼70%) for the microplastics in the real samples. It is also suggested tiny plastics in different sizes be removable using the sponge with controlled pore size. With combined merits of sustainability, cost-effectiveness, and simple operation without the need for professional background for this approach, industrial and even household removal of tiny plastic contaminants from environmental and food samples are within reach.
Collapse
Affiliation(s)
- Jianxin Fu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Nuan Liu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yunxi Peng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Xiaokun Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qiaoning Wang
- CAS key laboratory of Coastal Environmental Process and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Min Lv
- CAS key laboratory of Coastal Environmental Process and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- CAS key laboratory of Coastal Environmental Process and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
12
|
Cheng S, Hu J, Guo C, Ye Z, Shang Y, Lian C, Liu H. The effects of size and surface functionalization of polystyrene nanoplastics on stratum corneum model membranes: An experimental and computational study. J Colloid Interface Sci 2023; 638:778-787. [PMID: 36791476 DOI: 10.1016/j.jcis.2023.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/06/2023]
Abstract
Nanoplastics are mainly generated from the decomposition of plastic waste and artificial production and have attracted much attention due to their wide distribution in the environment and the potential risk for humans. As the largest organ of the human body, the skin is inevitably in contact with nanoplastics. Stratum corneum is the first barrier when the skin is exposed to nanoplastics. However, little is known about the interactions between nanoplastics and stratum corneum. Here, the effects of particle size and surface functionalization (amino-modified and carboxy-modified) of polystyrene nanoplastics on the stratum corneum models were studied by Langmuir monolayer and molecular dynamics simulations. An equimolar mixture of ceramide/cholesterol/free fatty acid was used to mimic stratum corneum intercellular lipids. The Langmuir monolayer studies demonstrated that the larger size and surface functionalization of polystyrene nanoplastics significantly reduced the stability of stratum corneum lipid monolayer in a concentration-dependent fashion. Simulation results elucidated that functionalized polystyrene oligomers had a stronger interaction with lipid components of the stratum corneum model membrane. The cell experiments also indicated that functionalized polystyrene nanoplastics, especially for amino-modified polystyrene nanoplastics, had significant cytotoxicity on normal human dermal fibroblast cells. Our results provide fundamental information and the basis for a deeper understanding of the health risks of nanoplastics to humans.
Collapse
Affiliation(s)
- Shiqiang Cheng
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiajie Hu
- Zhejiang Xianju Pharmaceutical Co., Ltd., Taizhou 318000, China
| | - Chen Guo
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Cheng Lian
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Cheng S, Ye Z, Wang X, Lian C, Shang Y, Liu H. The effects of adsorbed benzo(a)pyrene on dynamic behavior of polystyrene nanoplastics through phospholipid membrane: A molecular simulation study. Colloids Surf B Biointerfaces 2023; 224:113211. [PMID: 36863250 DOI: 10.1016/j.colsurfb.2023.113211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Nanoplastics (NPs) are mainly generated from the decomposition of plastic waste and industrial production, which have attracted much attention due to the potential risk for humans. The ability of NPs to penetrate different biological barriers has been proved, but the understanding of molecular details is very limited, especially for organic pollutant-NP combinations. Here, we investigated the uptake process of polystyrene NPs (PSNPs) combined with benzo(a)pyrene (BAP) molecules by dipalmitoylphosphatidylcholine (DPPC) bilayers by molecular dynamics (MD) simulations. The results showed that the PSNPs can adsorb and accumulate BAP molecules in water phase and then carried BAP molecules to enter DPPC bilayers. At the same time, the adsorbed BAP promoted the penetration of PSNPs into DPPC bilayers effectively by hydrophobic effect. The process of BAP-PSNP combinations penetrating into DPPC bilayers can be summarized into four steps including adhesion on the DPPC bilayer surface, uptake by the DPPC bilayer, BAP molecules detached from the PSNPs, and the PSNPs depolymerized in the bilayer interior. Furthermore, the amount of adsorbed BAP on PSNPs affected the properties of DPPC bilayers directly, especially the fluidity of DPPC bilayers that determine the physiologic function. Obviously, the combined effect of PSNPs and BAP enhanced the cytotoxicity. This work not only presented a vivid transmembrane process of BAP-PSNP combinations and revealed the nature of the effects of adsorbed benzo(a)pyrene on the dynamic behavior of polystyrene nanoplastics through phospholipid membrane, but also provide some necessary information of the potential damage for organic pollutant-nanoplastic combinations on human health at a molecular level.
Collapse
Affiliation(s)
- Shiqiang Cheng
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xiong Wang
- Department of Dermatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Cheng Lian
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Sun N, Shi H, Li X, Gao C, Liu R. Combined toxicity of micro/nanoplastics loaded with environmental pollutants to organisms and cells: Role, effects, and mechanism. ENVIRONMENT INTERNATIONAL 2023; 171:107711. [PMID: 36566717 DOI: 10.1016/j.envint.2022.107711] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Micro/nanoplastics (MPs/NPs) are ubiquitous in the environment and living organisms have been exposed to these substances for a long time. When MPs/NPs enter different organisms, they transport various pollutants, including heavy metals, persistent organic pollutants, drugs, bacteria, and viruses, from the environment. On this basis, this paper summarizes the combined toxicity induced by MPs/NPs accumulating contaminants from the environment and entering organisms through a systematic review of 162 articles. Moreover, the factors influencing toxic interactions are critically discussed, thus highlighting the dominant role of the relative concentrations of contaminants in the combined toxic effects. Furthermore, for the first time, we describe the threats posed by MPs/NPs combined with other pollutants to human health, as well as their cytotoxic behavior and mechanism. We found that the "Trojan horse" effect of nanoplastics can increase the bioaccessibility of environmental pollutants, thus increasing the carcinogenic risk to humans. Simultaneously, the complex pollutants entering the cells are observed to be constantly dissociated due to the transport of lysosomes. However, current research on the intracellular release of MP/NP-loaded pollutants is relatively poor, which hinders the accurate in vivo toxicity assessment of combined pollutants. Based on the findings of our critical review, we recommend analyzing the toxic effects by clarifying the dose relationship of each component pollutant in cells, which is challenging yet crucial to exploring the toxic mechanism of combined pollution. In the future, our findings can contribute to establishing a system modeling the complete load-translocation toxicological mechanism of MP/NP-based composite pollutants.
Collapse
Affiliation(s)
- Ning Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72#, Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
15
|
Clérigo F, Ferreira S, Ladeira C, Marques-Ramos A, Almeida-Silva M, Mendes LA. Cytotoxicity Assessment of Nanoplastics and Plasticizers Exposure in In Vitro Lung Cell Culture Systems—A Systematic Review. TOXICS 2022; 10:toxics10070402. [PMID: 35878307 PMCID: PMC9315584 DOI: 10.3390/toxics10070402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
Emerging contaminants such as nanoplastics (NPs), as well as manufacturing by-products such as plasticizers, have gained global attention and concern due to their limited biodegradability and their potential impact on human health, in particular the effects on respiratory tissue. In parallel, in vitro cell culture techniques are key to the assessment and characterization of toxic effects and cellular mechanisms in different types of tissues and should provide relevant information to understand the hazardous potential of these emergent contaminants. This systematic review presents the main results on the current knowledge of the effects of NPs and plasticizers on lung cells, as assessed with the use of in vitro cell culture techniques. From the selected studies (n = 10), following the PRISMA approach, it was observed that cell viability was the most frequently assessed endpoint and that most studies focused on epithelial cells and exposures to polystyrene (PS). It was observed that exposure to NPs or plasticizers induces cytotoxicity in a dose-dependent manner, regardless of the size of the NPs. Furthermore, there is evidence that the characteristics of NPs can affect the toxic response by promoting the association with other organic compounds. As such, further in vitro studies focusing on the combination of NPs with plasticizers will be essential for the understanding of mechanisms of NPs toxicity.
Collapse
Affiliation(s)
- Fabiana Clérigo
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (F.C.); (S.F.); (C.L.); (A.M.-R.); (M.A.-S.)
| | - Sandra Ferreira
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (F.C.); (S.F.); (C.L.); (A.M.-R.); (M.A.-S.)
| | - Carina Ladeira
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (F.C.); (S.F.); (C.L.); (A.M.-R.); (M.A.-S.)
- Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
| | - Ana Marques-Ramos
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (F.C.); (S.F.); (C.L.); (A.M.-R.); (M.A.-S.)
| | - Marina Almeida-Silva
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (F.C.); (S.F.); (C.L.); (A.M.-R.); (M.A.-S.)
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao Km 139.7, Bobadela-Loures, 2695-066 Lisbon, Portugal
| | - Luís André Mendes
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (F.C.); (S.F.); (C.L.); (A.M.-R.); (M.A.-S.)
- Animal Ecology Group (GEA), Universidade de Vigo, 36210 Vigo, Spain
- Correspondence:
| |
Collapse
|
16
|
Trevisan R, Ranasinghe P, Jayasundara N, Di Giulio RT. Nanoplastics in Aquatic Environments: Impacts on Aquatic Species and Interactions with Environmental Factors and Pollutants. TOXICS 2022; 10:toxics10060326. [PMID: 35736934 PMCID: PMC9230143 DOI: 10.3390/toxics10060326] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022]
Abstract
Plastic production began in the early 1900s and it has transformed our way of life. Despite the many advantages of plastics, a massive amount of plastic waste is generated each year, threatening the environment and human health. Because of their pervasiveness and potential for health consequences, small plastic residues produced by the breakdown of larger particles have recently received considerable attention. Plastic particles at the nanometer scale (nanoplastics) are more easily absorbed, ingested, or inhaled and translocated to other tissues and organs than larger particles. Nanoplastics can also be transferred through the food web and between generations, have an influence on cellular function and physiology, and increase infections and disease susceptibility. This review will focus on current research on the toxicity of nanoplastics to aquatic species, taking into account their interactive effects with complex environmental mixtures and multiple stressors. It intends to summarize the cellular and molecular effects of nanoplastics on aquatic species; discuss the carrier effect of nanoplastics in the presence of single or complex environmental pollutants, pathogens, and weathering/aging processes; and include environmental stressors, such as temperature, salinity, pH, organic matter, and food availability, as factors influencing nanoplastic toxicity. Microplastics studies were also included in the discussion when the data with NPs were limited. Finally, this review will address knowledge gaps and critical questions in plastics’ ecotoxicity to contribute to future research in the field.
Collapse
Affiliation(s)
- Rafael Trevisan
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88037-000, Brazil
- Correspondence:
| | - Prabha Ranasinghe
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; (P.R.); (N.J.); (R.T.D.G.)
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; (P.R.); (N.J.); (R.T.D.G.)
| | - Richard T. Di Giulio
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; (P.R.); (N.J.); (R.T.D.G.)
| |
Collapse
|
17
|
Li W, Zu B, Yang Q, An J, Li J. Nanoplastic adsorption characteristics of bisphenol A: The roles of pH, metal ions, and suspended sediments. MARINE POLLUTION BULLETIN 2022; 178:113602. [PMID: 35381461 DOI: 10.1016/j.marpolbul.2022.113602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/09/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastics (NPs) are widely found in the environment and can act as a vector for various toxic substances and promote their diffusion and bioenrichment, but the underlying mechanisms are largely unknown. Here, the adsorption characteristics of bisphenol A (BPA) onto NPs were explored. The results show that the adsorption of BPA on NPs was dominated by saturated single-layer adsorption and affected by both intra-particle diffusion and liquid film diffusion. Electrostatic interaction, π-π interaction, and hydrophobic effects played key roles in adsorption. In addition, the introduction of electrolytes inhibited the adsorption of BPA onto NPs. Interestingly, the introduction of suspended sediment promoted the formation of heterogeneous aggregates of NPs-SS, thereby reducing the adsorption capacity, indicating that aggregation may play an important role in the adsorption behavior of NPs. Overall, our results provide new insights into the adsorption behavior of BPA on NPs and the underlying mechanisms under different environmental conditions.
Collapse
Affiliation(s)
- Wang Li
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Bo Zu
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Qingwei Yang
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Junwen An
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jiawen Li
- Chongqing Research Academy of Ecology and Environmental Sciences, Chongqing 401147, China
| |
Collapse
|