1
|
De Nicola A, Montis C, Donati G, Molinaro A, Silipo A, Balestri A, Berti D, Di Lorenzo F, Zhu YL, Milano G. Bacterial lipids drive compartmentalization on the nanoscale. NANOSCALE 2023; 15:8988-8995. [PMID: 37144495 PMCID: PMC10210972 DOI: 10.1039/d3nr00559c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
The design of cellular functions in synthetic systems, inspired by the internal partitioning of living cells, is a constantly growing research field that is paving the way to a large number of new remarkable applications. Several hierarchies of internal compartments like polymersomes, liposomes, and membranes are used to control the transport, release, and chemistry of encapsulated species. However, the experimental characterization and the comprehension of glycolipid mesostructures are far from being fully addressed. Lipid A is indeed a glycolipid and the endotoxic part of Gram-negative bacterial lipopolysaccharide; it is the moiety that is recognized by the eukaryotic receptors giving rise to the modulation of innate immunity. Herein we propose, for the first time, a combined approach based on hybrid Particle-Field (hPF) Molecular Dynamics (MD) simulations and Small Angle X-Ray Scattering (SAXS) experiments to gain a molecular picture of the complex supramolecular structures of lipopolysaccharide (LPS) and lipid A at low hydration levels. The mutual support of data from simulations and experiments allowed the unprecedented discovery of the presence of a nano-compartmentalized phase composed of liposomes of variable size and shape which can be used in synthetic biological applications.
Collapse
Affiliation(s)
- Antonio De Nicola
- Scuola Superiore Meridionale, Via Largo San Marcellino 10, 80132 Napoli, Italy
- Graduate School of Organic Materials Science, Yamagata, University, Jonan 4-3-16, Yonezawa, Yamagata, 992-8510, Japan
| | - Costanza Montis
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze and CSGI, 50019 Firenze, Italy.
| | - Greta Donati
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, 80126 Napoli, Italy.
| | - Alba Silipo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, 80126 Napoli, Italy.
| | - Arianna Balestri
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze and CSGI, 50019 Firenze, Italy.
| | - Debora Berti
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze and CSGI, 50019 Firenze, Italy.
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, 80126 Napoli, Italy.
| | - You-Liang Zhu
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China
| | - Giuseppe Milano
- University of Naples Federico II, Department of Chemical, Materials and Production Engineering, Piazzale V. Tecchio, 80, 80125 Napoli, Italy.
| |
Collapse
|
2
|
Arundina I, Diyatri I, Juliastuti WS, Budhy TI, Surboyo MDC, Iskandar B, Halimah AN, Moelyanto ASA, Ramaniasari SM, Saputra G. Nanoparticles of Liquid Smoke Rice Husk Inhibit Porphyromonas gingivalis. Eur J Dent 2022. [PMID: 35820441 DOI: 10.1055/s-0042-1749154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVE Utilization of liquid smoke rice husk can be used as an alternative treatment because of the antimicrobial properties. Advances in drug delivery systems are increasingly developing to increase the bioavailability of drugs and reduce the side effects of these drugs, namely nanoparticles. In this study, nanoparticles of liquid smoke rice husk (nLSRH) were tested the antimicrobial against Porphyromonas gingivalis. MATERIALS AND METHOD This type of research is an experimental in vitro laboratory using Porphyromonas gingivalis culture. nLSRH contained liquid smoke rice husk concentration of 1, 2.5, 5, 7.5, 10, 12.5, 15, and 17.5%. The antibacterial was performed using the dilution methods. RESULTS The nLRSH concentration of 1% showed clearest medium. The highest number of colonies Porphyromonas gingivalis was observed at nLSRH concentration of 1% (40.3 colony-forming unit [CFU]) and decreased at a concentration of 2.5% (11.3 CFU); other concentration or no bacterial colony growth was found. The nLSRH concentration of 2.5% can be determined as the minimum inhibitory concentration and nLSRH concentration of 5% can be determined as the minimum bactericidal concentration. CONCLUSION nLSRH have antimicrobial activity against Porphyromonas gingivalis. This finding able to drive the next research to develop nLSRH as gingival and periodontitis disease is caused by Porphyromonas gingivalis.
Collapse
Affiliation(s)
- Ira Arundina
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Indeswati Diyatri
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Wisnu Setiari Juliastuti
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Theresia Indah Budhy
- Department of Oral Pathology and Maxillofacial, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Benni Iskandar
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Sekolah Tinggi Ilmu Farmasi, Pekanbaru, Riau, Indonesia
| | | | | | - Sheryn Marcha Ramaniasari
- Bachelor Dental Science Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Gustiadi Saputra
- Magister of Immunology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
3
|
Ishkhanyan H, Ziolek RM, Barlow DJ, Lawrence MJ, Poghosyan AH, Lorenz CD. NSAID solubilisation promotes morphological transitions in Triton X-114 surfactant micelles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Ishkhanyan H, Rhys NH, Barlow DJ, Lawrence MJ, Lorenz CD. Impact of drug aggregation on the structural and dynamic properties of Triton X-100 micelles. NANOSCALE 2022; 14:5392-5403. [PMID: 35319029 DOI: 10.1039/d1nr07936k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surfactants are used in a wide range of chemical and biological applications, and for pharmaceutical purposes are frequently employed to enhance the solubility of poorly water soluble drugs. In this study, all-atom molecular dynamics (MD) simulations and small-angle neutron scattering (SANS) experiments have been used to investigate the drug solubilisation capabilities of the micelles that result from 10 wt% aqueous solutions of the non-ionic surfactant, Triton X-100 (TX-100). Specifically, we have investigated the solubilisation of saturation amounts of the sodium salts of two nonsteroidal anti-inflammatory drugs: ibuprofen and indomethacin. We find that the ibuprofen-loaded micelles are more non-spherical than the indomethacin-loaded micelles which are in turn even more non-spherical than the TX-100 micelles that form in the absence of any drug. Our simulations show that the TX-100 micelles are able to solubilise twice as many indomethacin molecules as ibuprofen molecules, and the indomethacin molecules form larger aggregates in the core of the micelle than ibuprofen. These large indomethacin aggregates result in the destabilisation of the TX-100 micelle, which leads to an increase in the amount of water inside of the core of the micelle. These combined effects cause the eventual division of the indomethacin-loaded micelle into two daughter micelles. These results provide a mechanistic description of how drug interactions can affect the stability of the resulting nanoparticles.
Collapse
Affiliation(s)
- Hrachya Ishkhanyan
- Biological & Soft Matter Research Group, Department of Physics, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, London, UK.
| | - Natasha H Rhys
- Biological & Soft Matter Research Group, Department of Physics, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, London, UK.
| | - David J Barlow
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Stopford Building, Oxford Road, Manchester, UK
| | - M Jayne Lawrence
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Stopford Building, Oxford Road, Manchester, UK
| | - Christian D Lorenz
- Biological & Soft Matter Research Group, Department of Physics, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, London, UK.
| |
Collapse
|
5
|
Kratochvil HT, Newberry RW, Mensa B, Mravic M, DeGrado WF. Spiers Memorial Lecture: Analysis and de novo design of membrane-interactive peptides. Faraday Discuss 2021; 232:9-48. [PMID: 34693965 PMCID: PMC8979563 DOI: 10.1039/d1fd00061f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membrane-peptide interactions play critical roles in many cellular and organismic functions, including protection from infection, remodeling of membranes, signaling, and ion transport. Peptides interact with membranes in a variety of ways: some associate with membrane surfaces in either intrinsically disordered conformations or well-defined secondary structures. Peptides with sufficient hydrophobicity can also insert vertically as transmembrane monomers, and many associate further into membrane-spanning helical bundles. Indeed, some peptides progress through each of these stages in the process of forming oligomeric bundles. In each case, the structure of the peptide and the membrane represent a delicate balance between peptide-membrane and peptide-peptide interactions. We will review this literature from the perspective of several biologically important systems, including antimicrobial peptides and their mimics, α-synuclein, receptor tyrosine kinases, and ion channels. We also discuss the use of de novo design to construct models to test our understanding of the underlying principles and to provide useful leads for pharmaceutical intervention of diseases.
Collapse
Affiliation(s)
- Huong T Kratochvil
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Robert W Newberry
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Bruk Mensa
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Marco Mravic
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Cruz CHB, Marzuoli I, Fraternali F. Virus-inspired designs of antimicrobial nanocapsules. Faraday Discuss 2021; 232:448-462. [PMID: 34596638 DOI: 10.1039/d1fd00041a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antimicrobial resistance is becoming a serious burden for drug design. The challenges are in finding novel approaches for effectively targeting a number of different bacterial strains, and in delivering these to the site of action. We propose here a novel approach that exploits the assembly of antimicrobial peptidic units in nanocapsules that can penetrate and rupture the bacterial membrane. Additionally, the chemical versatility of the designed units can be tailored to specific targets and to the delivery of genetic material in the cell. The proposed design exploits a β-annulus (sequence ITHVGGVGGSIMAPVAVSRQLVGS) triskelion unit from the Tomato Bushy Stunt Virus, able to self assemble in solution, and functionalised with antimicrobial sequences to form dodecahedral antimicrobial nanocapsules. The stability and the activity of the antimicrobial β-annulus capsule is measured by molecular dynamics simulations in water and in the presence of model membranes.
Collapse
Affiliation(s)
- Carlos H B Cruz
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| | - Irene Marzuoli
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|