1
|
Xanthene dyes for cancer imaging and treatment: A material odyssey. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2
|
Wang S, Zhu S, Tanzeng Y, Zhang Y, Li C, Ma M, Lu W. Design, Synthesis, and Evaluation of Near-Infrared Fluorescent Molecules Based on 4H-1-Benzopyran Core. Molecules 2021; 26:molecules26226986. [PMID: 34834079 PMCID: PMC8620761 DOI: 10.3390/molecules26226986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/02/2022] Open
Abstract
A series of novel fluorescent 4H-1-benzopyrans was designed and developed as near-infrared fluorescent molecules with a compact donor–acceptor-donor architecture. Spectral intensity of the fluorescent molecules M-1, M-2, M-3 varied significantly with the increasing polarities of solvents, where M-3 showed high viscosity sensitivity in glycerol-ethanol system with a 3-fold increase in emission intensity. Increasing concentrations of compound M-3 to 5% BSA in PBS elicited a 4-fold increase in fluorescence intensity, exhibiting a superior environmental sensitivity. Furthermore, the in vitro cellular uptake behavior and CLSM assay of cancer cell lines demonstrated that M-3 could easily enter the cell nucleus and bind to proteins with low toxicity. Therefore, the synthesized near-infrared fluorescent molecules could provide a new direction for the development of optical imaging probes and potential further drugs.
Collapse
Affiliation(s)
- Shuting Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (S.W.); (S.Z.); (C.L.); (W.L.)
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shulei Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (S.W.); (S.Z.); (C.L.); (W.L.)
| | - Yawen Tanzeng
- Key Laboratory of Brain Functional Genomics-Ministry of Education, School of Life Science, East China Normal University, Shanghai 200062, China;
| | - Yuexing Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
| | - Chuchu Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (S.W.); (S.Z.); (C.L.); (W.L.)
| | - Mingliang Ma
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (S.W.); (S.Z.); (C.L.); (W.L.)
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Correspondence:
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; (S.W.); (S.Z.); (C.L.); (W.L.)
| |
Collapse
|
3
|
Ogasawara H, Tanaka Y, Taki M, Yamaguchi S. Late-stage functionalisation of alkyne-modified phospha-xanthene dyes: lysosomal imaging using an off-on-off type of pH probe. Chem Sci 2021; 12:7902-7907. [PMID: 34168843 PMCID: PMC8188471 DOI: 10.1039/d1sc01705e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Near-infrared (NIR) fluorescent molecules are of great importance for the visualisation of biological processes. Among the most promising dye scaffolds for this purpose are P[double bond, length as m-dash]O-substituted phospha-xanthene (POX) dyes, which show NIR emission with high photostability. Their practical utility for in vitro and in vivo imaging has recently been demonstrated. Although classical modification methods have been used to produce POX-based fluorescent probes, it is still a challenge to introduce additional functional groups to control the localisation of the probe in cells. Herein, we report on the development of POXs that bear a 4-ethynylphenyl group on the phosphorus atom. These dyes can subsequently be functionalised with azide-tagged biomolecules via a late-stage Cu-catalysed azide/alkyne cycloaddition (CuAAC) reaction, thus achieving target-selective labelling. To demonstrate the practical utility of the functionalised POXs, we designed a sophisticated NIR probe that exhibits a bell-shaped off-on-off pH-response and is able to assess the degree of endosomal maturation.
Collapse
Affiliation(s)
- Hiroaki Ogasawara
- Department of Chemistry, Graduate School of Science, Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Yoshiki Tanaka
- Department of Chemistry, Graduate School of Science, Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Masayasu Taki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa Nagoya 464-8601 Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa Nagoya 464-8601 Japan
| |
Collapse
|
4
|
Butkevich AN. Modular Synthetic Approach to Silicon-Rhodamine Homologues and Analogues via Bis-aryllanthanum Reagents. Org Lett 2021; 23:2604-2609. [PMID: 33720740 PMCID: PMC8041385 DOI: 10.1021/acs.orglett.1c00512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 11/29/2022]
Abstract
A modular synthetic approach toward diverse analogues of the far-red fluorophore silicon-rhodamine (SiR), based on a regioselective double nucleophilic addition of aryllanthanum reagents to esters, anhydrides, and lactones, is proposed. The reaction has improved functional group tolerance and represents a unified strategy toward cell-permeant, spontaneously blinking, and photoactivatable SiR fluorescent labels. In tandem with Pd-catalyzed hydroxy- or aminocarbonylation, it serves a streamlined synthetic pathway to a series of validated live-cell-compatible fluorescent dyes.
Collapse
Affiliation(s)
- Alexey N. Butkevich
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Ding Z, Wang C, Fan M, Zhang M, Zhou Y, Cui X, Zhang D, Wang T. Far-red imaging of β-galactosidase through a phospha-fluorescein. Chem Commun (Camb) 2020; 56:13579-13582. [PMID: 33052367 DOI: 10.1039/d0cc05529h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The introduction of phosphine oxide into a fluorescein scaffold has yielded phospha-fluorescein with bathochromically shifted spectra, reliable photostability and solubility. Moreover, ratiometric and turn-on fluorescence in the decaging process has ensured that the phospha-fluorescein is a unique scaffold for fluorescence bioimaging. Probe DiMe-PF-Gal without further structural decoration was designed for accurately monitoring β-galactosidase in vivo.
Collapse
Affiliation(s)
- Zichao Ding
- College of Pharmacy, Second Military Medical University, Shanghai, 200433, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Deng F, Liu L, Huang W, Huang C, Qiao Q, Xu Z. Systematic study of synthesizing various heteroatom-substituted rhodamines from diaryl ether analogues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118466. [PMID: 32521444 DOI: 10.1016/j.saa.2020.118466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
The dye rhodamine, as the most popular scaffold to construct fluorescent labels and probes, has been explored extensively on its structure-fluorescence relationships. Particularly, the replacement of the oxygen atom in the 10th position with heteroatoms obtained various new rhodamines with improved photophysical properties, such as brightness, photostability, red-shifted emission and fluorogenicity. However, the applications of heteroatom-substituted rhodamines have been hindered by difficult synthetic routes. Herein, we explored the condensation strategy of diaryl ether analogues and o-tolualdehyde to synthesize various heteroatom-substituted rhodamines. We found that the electron property and steric effect in the rhodamine 10th position determined the synthetic yield. It's concluded that this condensation method was more suitable for the synthesis of heteroatom-substituted rhodamines with small or electron-donating groups like rhodamine, S-rhodamine and Si-rhodamine. We hope these results will benefit the design and synthesis of heteroatom-substituted rhodamines.
Collapse
Affiliation(s)
- Fei Deng
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Limin Liu
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China.
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Chunfang Huang
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
7
|
A general method to optimize and functionalize red-shifted rhodamine dyes. Nat Methods 2020; 17:815-821. [PMID: 32719532 PMCID: PMC7396317 DOI: 10.1038/s41592-020-0909-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/22/2020] [Indexed: 12/29/2022]
Abstract
Expanding the palette of fluorescent dyes is vital to push the frontier of biological imaging. Although rhodamine dyes remain the premier type of small-molecule fluorophore due to their bioavailability and brightness, variants excited with far-red or near-infrared light suffer from poor performance due to their propensity to adopt a lipophilic, nonfluorescent form. We report a framework for rationalizing rhodamine behavior in biological environments and a general chemical modification for rhodamines that optimizes long-wavelength variants and enables facile functionalization with different chemical groups.
Collapse
|