1
|
Timmann S, Feng Z, Alcarazo M. Recent Applications of Sulfonium Salts in Synthesis and Catalysis. Chemistry 2024; 30:e202402768. [PMID: 39282878 DOI: 10.1002/chem.202402768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/06/2024]
Abstract
The use of sulfonium salts in organic synthesis has experienced a dramatic increase during the last years that can arguably be attributed to three main factors; the development of more direct and efficient synthetic methods that make easily available sulfonium reagents of a wide structural variety, their intrinsic thermal stability, which facilitates their structural modification, handling and purification even on large scale, and the recognition that their reactivity resembles that of hypervalent iodine compounds and therefore, they can be used as replacement of such reagents for most of their uses. This renewed interest has led to the improvement of already existing reactions, as well as to the discovery of unprecedented transformations; in particular, by the implementation of photocatalytic protocols. This review aims to summarize the most recent advancements on the area focusing on the work published during and after 2020. The scope of the methods developed will be highlighted and their limitations critically evaluated.
Collapse
Affiliation(s)
- Sven Timmann
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Zeyu Feng
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
2
|
Tsujihara T, Nishino K, Miura W, Chiba A, Hayashi W, Yoshida C, Takehara T, Suzuki T, Kawano T. Enantioselective One-Pot Synthesis of Cyclopropane-Fused Tetrahydroquinolines via a Ru-Catalyzed Intramolecular Cyclopropanation. Org Lett 2024; 26:6502-6506. [PMID: 39046795 DOI: 10.1021/acs.orglett.4c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A highly enantioselective one-pot synthesis of cyclopropane-fused tetrahydroquinolines bearing carbonyl functionalities, which are difficult to synthesize using conventional methods, is reported. Employing readily accessible alkene-tethered anthranilaldehydes, hydrazone formation and subsequent Ru-catalyzed intramolecular cyclopropanation furnish the desired products in ≤87% yield and ≤95% ee under mild conditions. Various anthranilaldehydes, functionalized alkenes, and N-aryl sulfonyl groups are tolerated, and a series of synthetic transformations were conducted to demonstrate the practical utility.
Collapse
Affiliation(s)
- Tetsuya Tsujihara
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Koki Nishino
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Wakaba Miura
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Ayumi Chiba
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Wakana Hayashi
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Chika Yoshida
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Tsunayoshi Takehara
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki 567-0047, Japan
| | - Takeyuki Suzuki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki 567-0047, Japan
| | - Tomikazu Kawano
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
3
|
Wang ZH, Huang DQ, Wang P, Yang L, You Y, Zhao JQ, Zhang YP, Yuan WC. Synthesis of 6/5/3-Fused Tricyclic Scaffolds via Multistep Cascade Cyclization of α-Aryl Vinylsulfoniums with para-Quinamines and para-Quinols. Org Lett 2024; 26:5905-5910. [PMID: 38980194 DOI: 10.1021/acs.orglett.4c01740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Herein, we present a straightforward approach to access hydroindoline-5-one-based 6/5/3-fused polycyclic ring structures through multistep cascade reactions involving α-aryl vinylsulfoniums and para-quinamines. The reactions proceed smoothly under mild conditions to deliver the desired products in generally good isolated yields. This protocol is also applicable to the cascade cycloaddition reactions of α-aryl vinylsulfoniums and para-quinols, effectively generating complex tricyclic scaffolds. In addition, the scale-up synthesis and further derivatizations demonstrate the potential synthetic application of the protocol.
Collapse
Affiliation(s)
- Zhen-Hua Wang
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Dong-Qun Huang
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ping Wang
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Lei Yang
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
4
|
Lee WCC, Wang J, Zhu Y, Zhang XP. Asymmetric Radical Bicyclization for Stereoselective Construction of Tricyclic Chromanones and Chromanes with Fused Cyclopropanes. J Am Chem Soc 2023; 145:11622-11632. [PMID: 37129381 PMCID: PMC10249947 DOI: 10.1021/jacs.3c01618] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Asymmetric radical bicyclization processes have been developed via metalloradical catalysis (MRC) to stereoselectively construct chiral chromanones and chromanes bearing fused cyclopropanes. Through optimization of a versatile D2-symmetric chiral amidoporphyrin ligand platform, a Co(II)-metalloradical system can homolytically activate both diazomalonates and α-aryldiazomethanes containing different alkene functionalities under mild conditions for effective radical bicyclization, delivering cyclopropane-fused tricyclic chromanones and chromanes, respectively, in high yields with excellent control of both diastereoselectivities and enantioselectivities. Combined computational and experimental studies, including the electron paramagnetic resonance (EPR) detection and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) trapping of key radical intermediates, shed light on the working details of the underlying stepwise radical mechanisms of the Co(II)-catalyzed bicyclization processes. The two catalytic radical processes provide effective synthetic tools for stereoselective construction of valuable cyclopropane-fused chromanones and chromanes with newly generated contiguous stereogenic centers. As a specific demonstration of synthetic application, the Co(II)-catalyzed radical bicyclization has been employed as a key step for the first asymmetric total synthesis of the natural product (+)-Radulanin J.
Collapse
Affiliation(s)
- Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingyi Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yiling Zhu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
5
|
Wu S, Cheng X, Yao C, Yang W, Zheng J. Synthesis of CF
3
, CF
2
H‐Substituted, Epoxide‐Fused Heterocycles with Prop‐2‐ynylsulfonium salts. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Affiliation(s)
- Shitong Wu
- School of Chemical and Chemical Engineering NanChang University NanChang 330031 China
| | - Xi Cheng
- School of Chemical and Chemical Engineering NanChang University NanChang 330031 China
| | - Changguang Yao
- School of Chemical and Chemical Engineering NanChang University NanChang 330031 China
| | - Weiran Yang
- School of Chemical and Chemical Engineering NanChang University NanChang 330031 China
| | - Jing Zheng
- School of Chemical and Chemical Engineering NanChang University NanChang 330031 China
| |
Collapse
|
6
|
Bharath Kumar P, Raju CE, Chandubhai PH, Sridhar B, Karunakar GV. Gold(I)-Catalyzed Regioselective Cyclization to Access Cyclopropane-Fused Tetrahydrobenzochromenes. Org Lett 2022; 24:6761-6766. [DOI: 10.1021/acs.orglett.2c02564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Perla Bharath Kumar
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Chittala Emmaniel Raju
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Patel Hinal Chandubhai
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Balasubramanian Sridhar
- Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Galla V. Karunakar
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
7
|
Li JL, Li QZ, Zou WL, Jia ZQ. Recent Advances on Annulation Reactions with Allyl and Propargyl Sulfonium Salts. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1578-2911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractAllyl and propargyl sulfonium salts are readily available reagents that have recently emerged as versatile building blocks for the assembly of cyclic skeletons. As an alternative to classical sulfonium salts, allyl and propargyl sulfonium salts can be converted into the corresponding vinyl sulfur ylide or allenic sulfonium salt intermediates that contain diverse nucleophilic or electrophilic reactive positions, thereby enabling a great variety of annulation reactions. In this short review, we provide a comprehensive overview of the recent developments in this growing field by summarizing annulation reactions involving allyl and propargyl sulfonium salts. 1 Introduction2 Annulations with Allyl Sulfonium Salts3 Annulations with Propargyl Sulfonium Salts4 Conclusion
Collapse
|
8
|
Zhang X, Gao Y, Liu Y, Miao Z. Diastereoselective Synthesis of Tetrabenzohydrofuran Spirooxindoles via Diethyl Phosphite-Mediated Coupling of Isatins with o-Quinone Methides. J Org Chem 2021; 86:8630-8640. [PMID: 34162210 DOI: 10.1021/acs.joc.1c00336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diethyl phosphite-initiated coupling of isatins with o-quinone methides (o-QMs) is reported. This reaction involves a cascade transformation initiated by base-promoted addition of phosphite to isatins, followed by [1,2]-phospha-Brook rearrangement. This generates α-phosphonyloxy enolates that are subsequently intercepted by o-QMs and finally intramolecular ring closure. This protocol was used to diastereoselectively synthesize a range of trans-tetrabenzohydrofuran spirooxindoles in moderate to good yields with moderate to excellent diastereoselectivities.
Collapse
Affiliation(s)
- Xiyuan Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Yanfeng Gao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Yitong Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Zhiwei Miao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
9
|
Huang J, Sun S, Ma P, Wang J, Lee K, Xing Y, Wu Y, Wang G. Highly diastereoselective spiro-cyclopropanation of 2-arylidene-1,3-indanediones and dimethylsulfonium ylides. NEW J CHEM 2021. [DOI: 10.1039/d1nj02886c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
High diastereoselectivity, mild conditions and excellent functional group compatibility.
Collapse
Affiliation(s)
- Jie Huang
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
- Xianning Engineering Research Center for Healthy Environment, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China
| | - Shaofa Sun
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
| | - Ping Ma
- Xianning Engineering Research Center for Healthy Environment, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China
| | - Jian Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Kevin Lee
- Department of Chemistry, William Paterson University of New Jersey, 300 Pompton Road, Wayne, New Jersey 07470, USA
| | - Yalan Xing
- Department of Chemistry, William Paterson University of New Jersey, 300 Pompton Road, Wayne, New Jersey 07470, USA
| | - Yang Wu
- Xianning Engineering Research Center for Healthy Environment, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China
| | - Gangqiang Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|