1
|
Rahali E, Noori Z, Arfaoui Y, Poater J. Chalcogen Noncovalent Interactions between Diazines and Sulfur Oxides in Supramolecular Circular Chains. Int J Mol Sci 2024; 25:7497. [PMID: 39000604 PMCID: PMC11242197 DOI: 10.3390/ijms25137497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024] Open
Abstract
The noncovalent chalcogen interaction between SO2/SO3 and diazines was studied through a dispersion-corrected DFT Kohn-Sham molecular orbital together with quantitative energy decomposition analyses. For this, supramolecular circular chains of up to 12 molecules were built with the aim of checking the capability of diazine molecules to detect SO2/SO3 compounds within the atmosphere. Trends in the interaction energies with the increasing number of molecules are mainly determined by the Pauli steric repulsion involved in these σ-hole/π-hole interactions. But more importantly, despite the assumed electrostatic nature of the involved interactions, the covalent component also plays a determinant role in its strength in the involved chalcogen bonds. Noticeably, π-hole interactions are supported by the charge transfer from diazines to SO2/SO3 molecules. Interaction energies in these supramolecular complexes are not only determined by the S···N bond lengths but attractive electrostatic and orbital interactions also determine the trends. These results should allow us to establish the fundamental characteristics of chalcogen bonding based on its strength and nature, which is of relevance for the capture of sulfur oxides.
Collapse
Affiliation(s)
- Emna Rahali
- Laboratory of Characterizations, Applications and Modeling of Materials (LR18ES08), Department of Chemistry, University of Tunis El Manar, Tunis 1068, Tunisia; (E.R.); (Y.A.)
- Department de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain;
| | - Zahra Noori
- Department de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain;
| | - Youssef Arfaoui
- Laboratory of Characterizations, Applications and Modeling of Materials (LR18ES08), Department of Chemistry, University of Tunis El Manar, Tunis 1068, Tunisia; (E.R.); (Y.A.)
| | - Jordi Poater
- Department de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain;
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
2
|
Wang J, Kleimeier NF, Johnson RN, Gozem S, Abplanalp MJ, Turner AM, Marks JH, Kaiser RI. Photochemically triggered cheletropic formation of cyclopropenone (c-C 3H 2O) from carbon monoxide and electronically excited acetylene. Phys Chem Chem Phys 2022; 24:17449-17461. [PMID: 35713004 DOI: 10.1039/d2cp01978g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For more than half a century, pericyclic reactions have played an important role in advancing our fundamental understanding of cycloadditions, sigmatropic shifts, group transfer reactions, and electrocyclization reactions. However, the fundamental mechanisms of photochemically activated cheletropic reactions have remained contentious. Here we report on the simplest cheletropic reaction: the [2+1] addition of ground state 18O-carbon monoxide (C18O, X1Σ+) to D2-acetylene (C2D2) photochemically excited to the first excited triplet (T1), second excited triplet (T2), and first excited singlet state (S1) at 5 K, leading to the formation of D2-18O-cyclopropenone (c-C3D218O). Supported by quantum-chemical calculations, our investigation provides persuasive testimony on stepwise cheletropic reaction pathways to cyclopropenone via excited state dynamics involving the T2 (non-adiabatic) and S1 state (adiabatic) of acetylene at 5 K, while the T1 state energetically favors an intermediate structure that directly dissociates after relaxing to the ground state. The agreement between experiments in low temperature ices and the excited state calculations signifies how photolysis experiments coupled with theoretical calculations can untangle polyatomic reactions with relevance to fundamental physical organic chemistry at the molecular level, thus affording a versatile strategy to unravel exotic non-equilibrium chemistries in cyclic, aromatic organics. Distinct from traditional radical-radical pathways leading to organic molecules on ice-coated interstellar nanoparticles (interstellar grains) in cold molecular clouds and star-forming regions, the photolytic formation of cyclopropenone as presented changes the perception of how we explain the formation of complex organics in the interstellar medium eventually leading to the molecular precursors of biorelevant molecules.
Collapse
Affiliation(s)
- Jia Wang
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA. .,W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - N Fabian Kleimeier
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA. .,W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Rebecca N Johnson
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA.
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA.
| | - Matthew J Abplanalp
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA. .,W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Andrew M Turner
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA. .,W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Joshua H Marks
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA. .,W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA. .,W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
3
|
Berlicka A, Foryś-Martowłos P, Hassa K, Białek MJ, Ślepokura K, Latos-Grażyński L. 21-Carba-23-oxaporphyrinoids and 21-oxo-21-carba-23-oxaporphyrinoids: macrocyclic π-conjugation involving the carbonyl moiety. Org Chem Front 2022. [DOI: 10.1039/d2qo00960a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aromaticity of 21-oxo-21-carba-23-oxachlorin resulted from a predominant dipolar contributor. Nonaromaticity of 21-oxo-21-carba-23-oxaporphyrin reflects a participation of canonical aromatic and antiaromatic forms engaged in a peculiar “tug of war”.
Collapse
Affiliation(s)
- Anna Berlicka
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | | | - Karolina Hassa
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Michał J. Białek
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Katarzyna Ślepokura
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | | |
Collapse
|