1
|
Bhuin S, Chakraborty P, Yogeeswari P, Chakravarty M. Twisted Molecular Core Conjugated Oxo-Ether as a Fluorescent Probe for Lipid-Droplets Bioimaging and Live Cancer Cell Discrimination. ACS APPLIED BIO MATERIALS 2025; 8:2985-3001. [PMID: 40053476 DOI: 10.1021/acsabm.4c01817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
In quest of a new working design for a photostable lipid-droplets (LDs) bioimaging probe, we herein unveil and demonstrate a twisted donor(naphthalene)-π-acceptor(dicyano) architecture linked with oxo/thioether functionality, where the probes' emission, hydrophobicity, cytotoxicity, and cell permeability are altered by replacing the present chalcogen/s. In this class of molecules, an "oxanthrene"-based compound, "OXNCN", was realized as the noncytotoxic and cell-permeable probe, displaying intense fluorescence in a nonpolar solvent, aggregates, and viscous medium. Time-dependent density functional theory (TD-DFT) investigations revealed that OXNCN holds a favorable extent of excited-state planarity to bring out considerable emission only in a nonpolar solvent, resulting in polarity-dependent emission. Outcomes of the concentration- and time-dependent colocalization investigations, cholesterol depletion/repletion studies, and oleic acid treatment-based experiments validated its LD specificity. Strong twisted intramolecular charge transfer (TICT) culminated in weak emission in the polar medium, which helped the probe reduce the cytoplasmic signal. Moreover, the results of time-dependent kinetic acquisitional photophysical studies, fluorescence recovery after photobleaching (FRAP), and intracellular emission investigations testified to the probe's photostability. Assiduous analysis and quantification of confocal laser scanning microscopy (CLSM) images by two-way analysis of variance (ANOVA), followed by Sidak's multiple comparison statistics, could provide insights into the probe's better performance in robust cancer cells (FaDu) than in normal ones (HEK-293). A precise discrimination between oral and normal cancer cells could be established by quantifying the deposited lipid droplets from the CLSM-captured cellular images and applying Student's t test with the quantified values.
Collapse
|
2
|
Kim EJ, Jeon HB, Kang MJ, Lee J. Dynamic Imaging of Lipid Droplets in Cells and Tissues by Using Dioxaborine Barbiturate-Based Fluorogenic Probes. Anal Chem 2024; 96:8356-8364. [PMID: 38753674 DOI: 10.1021/acs.analchem.3c05368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Lipids are essential for various cellular functions, including energy storage, membrane flexibility, and signaling molecule production. Maintaining proper lipid levels is important to prevent health problems such as cancer, neurodegenerative disorders, cardiovascular diseases, obesity, and diabetes. Monitoring cellular lipid droplets (LDs) in real-time with high resolution can provide insights into LD-related pathways and diseases owing to the dynamic nature of LDs. Fluorescence-based imaging is widely used for tracking LDs in live cells and animal models. However, the current fluorophores have limitations such as poor photostability and high background staining. Herein, we developed a novel fluorogenic probe based on a push-pull interaction combined with aggregation-induced emission enhancement (AIEE) for dynamic imaging of LDs. Probe 1 exhibits favorable membrane permeability and spectroscopic characteristics, allowing specific imaging of cellular LDs and time-lapse imaging of LD accumulation. This probe can also be used to examine LDs in fruit fly tissues in various metabolic states, serving as a highly versatile and specific tool for dynamic LD imaging in cellular and tissue environments.
Collapse
Affiliation(s)
- Eun-Ji Kim
- Department of Next-Generation Applied Science and School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Republic of Korea
| | - Hye-Bin Jeon
- Department of Next-Generation Applied Science and School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Republic of Korea
| | - Min-Ji Kang
- Department of Pharmacology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Jiyoun Lee
- Department of Next-Generation Applied Science and School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Republic of Korea
| |
Collapse
|
3
|
Rajput MD, Mahalingavelar P, Patel MD, Bait A, Mandal P, Soppina V, Kanvah S. Lipid Droplets Specific Fluorophore for Demarcation of Normal and Diseased Tissues. Chembiochem 2024; 25:e202300698. [PMID: 37889156 DOI: 10.1002/cbic.202300698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
Using high-fidelity, permeable, lipophilic, and bright fluorophores for imaging lipid droplets (LDs) in tissues holds immense potential in diagnosing conditions such as diabetic or alcoholic fatty liver disease. In this work, we utilized linear and Λ-shaped polarity-sensitive fluorescent probes for imaging LDs in both cellular and tissue environments, specifically in rats with diabetic and alcoholic fatty liver disease. The fluorescent probes possess several key characteristics, including high permeability, lipophilicity, and brightness, which make them well-suited for efficient LD imaging. Notably, the probes exhibit a substantial Stokes shift, with 143 nm for DCS and 201 nm for DCN with selective targeting of the lipid droplets. Our experimental investigations successfully differentiated morphological variations between diseased and normal tissues in three distinct tissue types: liver, adipose, and small intestine. They could help provide pointers for improved detection and understanding of LD-related pathologies.
Collapse
Affiliation(s)
- Ms Deeksha Rajput
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382055, India
| | - Paramasivam Mahalingavelar
- School of Chemistry and Biochemistry, Georgia Institute of Technology Atlanta, Atlanta, Georgia, 30332, USA
| | - Ms Dhara Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology Changa, 388421, Anand, Gujarat, India
| | - Amey Bait
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382055, India
| | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology Changa, 388421, Anand, Gujarat, India
| | - Virupakshi Soppina
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Palaj, Gandhinagar, Gujarat, 382055, India
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382055, India
| |
Collapse
|
4
|
Rajput D, Mahalingavelar P, Soppina V, Kanvah S. Improved lipophilic probe for visualizing lipid droplets in erastin-induced ferroptosis. Org Biomol Chem 2023; 21:8554-8562. [PMID: 37853800 DOI: 10.1039/d3ob01545a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Studying the viscosity of lipid droplets (LDs) provides insights into various diseases associated with LD viscosity. Ferroptosis is one such process in which LD viscosity increases due to the abnormal accumulation of lipid ROS (reactive oxygen species) caused by peroxidation. For investigating the LD imaging and ferroptosis, we developed two molecules (NNS and DNS) that show significant Stokes shifts (182-232 nm) and utilized them for sub-cellular imaging. Excellent localization is noted with the lipid droplets. Subsequently, DNS was used to monitor the variations in the LD viscosity during erastin-induced ferroptosis followed by ferroptosis inhibition. Additionally, we explored variations in the LD quantity, size, and accumulation when subjected to oleic acid stimulation. Extensive DFT and TDDFT investigations have been employed to understand the effect of NO2 substitution on the linear and branched molecular derivatives. Our results with the improved lipophilic fluorophore, exhibiting excellent colocalization with LDs, offer valuable insights into sensing erastin-induced ferroptosis and have the potential for real-time diagnostic applications.
Collapse
Affiliation(s)
- Deeksha Rajput
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382055, India.
| | | | - Virupakshi Soppina
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382055, India.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382055, India.
| |
Collapse
|
5
|
Sharma CP, Vyas A, Pandey P, Gupta S, Vats RP, Jaiswal SP, Bhatt MLB, Sachdeva M, Goel A. A new class of teraryl-based AIEgen for highly selective imaging of intracellular lipid droplets and its detection in advanced-stage human cervical cancer tissues. J Mater Chem B 2023; 11:9922-9932. [PMID: 37840367 DOI: 10.1039/d3tb01764h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Lipid droplets (LDs) have drawn much attention in recent years. They serve as the energy reservoir of cells and also play an important role in numerous physiological processes. Furthermore, LDs are found to be associated with several pathological conditions, including cancer and diabetes mellitus. Herein, we report a new class of teraryl-based donor-acceptor-appended aggregation-induced emission luminogen (AIEgen), 6a, for selective staining of intracellular LDs in in vitro live 3T3-L1 preadipocytes and the HeLa cancer cell line. In addition, AIEgen 6a was found to be capable of staining and quantifying the LD accumulation in the tissue sections of advanced-stage human cervical cancer patients. Unlike commercial LD staining dyes Nile Red, BODIPY and LipidTOX, AIEgen 6a showed a high Stokes shift (195 nm), a good fluorescence lifetime decay of 12.7 ns, and LD staining persisting for nearly two weeks.
Collapse
Affiliation(s)
- Chandra Prakash Sharma
- Fluorescent Chemistry Lab, Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Akanksha Vyas
- Division of Endocrinology CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Priyanka Pandey
- Fluorescent Chemistry Lab, Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Shashwat Gupta
- Fluorescent Chemistry Lab, Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ravi Prakash Vats
- Fluorescent Chemistry Lab, Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Sakshi Priya Jaiswal
- Fluorescent Chemistry Lab, Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | | | - Monika Sachdeva
- Division of Endocrinology CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Atul Goel
- Fluorescent Chemistry Lab, Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
6
|
Imaging of lipid droplets using coumarin fluorophores in live cells and C. elegans. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2022; 237:112589. [DOI: 10.1016/j.jphotobiol.2022.112589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/07/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
7
|
Gao F, Tom E, Skowronska-Krawczyk D. Dynamic Progress in Technological Advances to Study Lipids in Aging: Challenges and Future Directions. FRONTIERS IN AGING 2022; 3:851073. [PMID: 35821837 PMCID: PMC9261449 DOI: 10.3389/fragi.2022.851073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
Lipids participate in all cellular processes. Diverse methods have been developed to investigate lipid composition and distribution in biological samples to understand the effect of lipids across an organism’s lifespan. Here, we summarize the advanced techniques for studying lipids, including mass spectrometry-based lipidomics, lipid imaging, chemical-based lipid analysis and lipid engineering and their advantages. We further discuss the limitation of the current methods to gain an in-depth knowledge of the role of lipids in aging, and the possibility of lipid-based therapy in aging-related diseases.
Collapse
Affiliation(s)
- Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Emily Tom
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- *Correspondence: Dorota Skowronska-Krawczyk,
| |
Collapse
|
8
|
Antunes P, Cruz A, Barbosa J, Bonifácio VDB, Pinto SN. Lipid Droplets in Cancer: From Composition and Role to Imaging and Therapeutics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030991. [PMID: 35164256 PMCID: PMC8840564 DOI: 10.3390/molecules27030991] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
Abstract
Cancer is the second most common cause of death worldwide, having its origin in the abnormal growth of cells. Available chemotherapeutics still present major drawbacks, usually associated with high toxicity and poor distribution, with only a small fraction of drugs reaching the tumour sites. Thus, it is urgent to develop novel therapeutic strategies. Cancer cells can reprogram their lipid metabolism to sustain uncontrolled proliferation, and, therefore, accumulate a higher amount of lipid droplets (LDs). LDs are cytoplasmic organelles that store neutral lipids and are hypothesized to sequester anti-cancer drugs, leading to reduced efficacy. Thus, the increased biogenesis of LDs in neoplastic conditions makes them suitable targets for anticancer therapy and for the development of new dyes for cancer cells imaging. In recent years, cancer nanotherapeutics offered some exciting possibilities, including improvement tumour detection and eradication. In this review we summarize LDs biogenesis, structure and composition, and highlight their role in cancer theranostics.
Collapse
Affiliation(s)
- Patrícia Antunes
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (P.A.); (A.C.); (J.B.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Adriana Cruz
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (P.A.); (A.C.); (J.B.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - José Barbosa
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (P.A.); (A.C.); (J.B.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Vasco D. B. Bonifácio
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (P.A.); (A.C.); (J.B.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (V.D.B.B.); (S.N.P.)
| | - Sandra N. Pinto
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (P.A.); (A.C.); (J.B.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (V.D.B.B.); (S.N.P.)
| |
Collapse
|
9
|
Mahalingavelar P, Kanvah S. α-Cyanostilbene: A Multifunctional Spectral Engineering Motif. Phys Chem Chem Phys 2022; 24:23049-23075. [DOI: 10.1039/d2cp02686d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The remarkable photophysical phenomenon of aggregation-induced emission offers excellent strategies to obtain the molecular materials possessing unique spectral signatures such as high fluorescence intensity, excellent quantum yield, large Stokes shift...
Collapse
|
10
|
Hickey SM, Ung B, Bader C, Brooks R, Lazniewska J, Johnson IRD, Sorvina A, Logan J, Martini C, Moore CR, Karageorgos L, Sweetman MJ, Brooks DA. Fluorescence Microscopy-An Outline of Hardware, Biological Handling, and Fluorophore Considerations. Cells 2021; 11:35. [PMID: 35011596 PMCID: PMC8750338 DOI: 10.3390/cells11010035] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescence microscopy has become a critical tool for researchers to understand biological processes at the cellular level. Micrographs from fixed and live-cell imaging procedures feature in a plethora of scientific articles for the field of cell biology, but the complexities of fluorescence microscopy as an imaging tool can sometimes be overlooked or misunderstood. This review seeks to cover the three fundamental considerations when designing fluorescence microscopy experiments: (1) hardware availability; (2) amenability of biological models to fluorescence microscopy; and (3) suitability of imaging agents for intended applications. This review will help equip the reader to make judicious decisions when designing fluorescence microscopy experiments that deliver high-resolution and informative images for cell biology.
Collapse
Affiliation(s)
- Shane M. Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | - Ben Ung
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hoang MD, Bodin JB, Savina F, Steinmetz V, Bignon J, Durand P, Clavier G, Méallet-Renault R, Chevalier A. "CinNapht" dyes: a new cinnoline/naphthalimide fused hybrid fluorophore. Synthesis, photo-physical study and use for bio-imaging. RSC Adv 2021; 11:30088-30092. [PMID: 35493990 PMCID: PMC9041350 DOI: 10.1039/d1ra05110e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
Six-membered-diaza ring of cinnoline has been fused on naphthalimide dye to give a donor-acceptor system called CinNapht. This red shifted fluorophore, that can be synthesised in gram scale, exhibits a large Stoke shift and a fluorescence quantum yield up to 0.33. It is also characterized by a strong solvatochromic effect from green to red emission as well and can be used for bio-imaging.
Collapse
Affiliation(s)
- Minh-Duc Hoang
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles UPR 2301 91198 Gif-sur-Yvette France
| | - Jean-Baptiste Bodin
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay Orsay 91405 France
| | - Farah Savina
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay Orsay 91405 France
| | - Vincent Steinmetz
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles UPR 2301 91198 Gif-sur-Yvette France
| | - Jérôme Bignon
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles UPR 2301 91198 Gif-sur-Yvette France
| | - Philippe Durand
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles UPR 2301 91198 Gif-sur-Yvette France
| | - Gilles Clavier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM 91190 Gif-sur-Yvette France
| | - Rachel Méallet-Renault
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay Orsay 91405 France
| | - Arnaud Chevalier
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles UPR 2301 91198 Gif-sur-Yvette France
| |
Collapse
|
12
|
Wang K, Liu L, Mao D, Xu S, Tan C, Cao Q, Mao Z, Liu B. A Polarity‐Sensitive Ratiometric Fluorescence Probe for Monitoring Changes in Lipid Droplets and Nucleus during Ferroptosis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kang‐Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Liu‐Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Duo Mao
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Cai‐Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
13
|
Wang KN, Liu LY, Mao D, Xu S, Tan CP, Cao Q, Mao ZW, Liu B. A Polarity-Sensitive Ratiometric Fluorescence Probe for Monitoring Changes in Lipid Droplets and Nucleus during Ferroptosis. Angew Chem Int Ed Engl 2021; 60:15095-15100. [PMID: 33835669 DOI: 10.1002/anie.202104163] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 01/08/2023]
Abstract
Ferroptosis regulates cell death through reactive oxygen species (ROS)-associated lipid peroxide accumulation, which is expected to affect the structure and polarity of lipid droplets (LDs), but with no clear evidence. Herein, we report the first example of an LD/nucleus dual-targeted ratiometric fluorescent probe, CQPP, for monitoring polarity changes in the cellular microenvironment. Due to the donor-acceptor structure of CQPP, it offers ratiometric fluorescence emission and fluorescence lifetime signals that reflect polarity variations. Using nucleus imaging as a reference, CQPP was applied to report the increase in LD polarity and the homogenization of polarity between LDs and cytoplasm in the ferroptosis model. This LD/nucleus dual-targeted fluorescent probe shows the great potential of using fluorescence imaging to study ferroptosis and ferroptosis-related diseases.
Collapse
Affiliation(s)
- Kang-Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Duo Mao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
14
|
Mukherjee T, Soppina V, Ludovic R, Mély Y, Klymchenko AS, Collot M, Kanvah S. Live-cell imaging of the nucleolus and mapping mitochondrial viscosity with a dual function fluorescent probe. Org Biomol Chem 2021; 19:3389-3395. [PMID: 33555275 DOI: 10.1039/d0ob02378g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Visualization of sub-cellular organelles allows the determination of various cellular processes and the underlying mechanisms. Herein, we report a fluorescent probe, bearing push-pull substituents emitting at 600 nm and its application in cellular imaging. The probe shows dual imaging of mitochondria and nucleoli and maps mitochondrial viscosity in live cells under various physiological variations and show minimum cytotoxicity. Nucleolar staining is confirmed by RNAase digestion.
Collapse
Affiliation(s)
- Tarushyam Mukherjee
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| | - Virupakshi Soppina
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| | - Richert Ludovic
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Sriram Kanvah
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| |
Collapse
|