1
|
Shi X, Yu B, Zhou X, Yang Y. Photoinduced selective perfluoroalkylation of terminal alkynes via electron donor-acceptor complexes. Chem Commun (Camb) 2024; 60:2532-2535. [PMID: 38329183 DOI: 10.1039/d4cc00105b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Herein, we report a photoinduced selective perfluoroalkylation of terminal alkynes driven by the noncovalent interaction between a thymol anion and fluoroalkyl iodides. By precisely tuning the reaction solvent, a wide range of 37 structurally diverse perfluoroalkylated alkynes and alkenes, including ibuprofen, empagliflozin, galactose, isoxepac and indomethacin, were obtained in up to 92% yields. Mechanistic studies reveal the formation of EDA complexes between the thymol anion and fluoroalkyl iodides. This strategy may provide an important complement to traditional approaches to prepare useful perfluoroalkylated alkynes and alkenes.
Collapse
Affiliation(s)
- Xiaolin Shi
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Bo Yu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhou
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Yong Yang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Zeng X, Cheng Z, Xie Y, Gu Y. Transition-metal-free Synthesis of tetra-substituted Vinyl Iodides by Cascade Sequential Reaction of α-Keto Acids, 1-Iodoalkynes, and Alkyl Halides. Chem Asian J 2023; 18:e202201117. [PMID: 36458644 DOI: 10.1002/asia.202201117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
The cascade sequential reaction of α-keto acids, 1-iodoalkynes, and alkyl halides are reported herein to synthesize tetra-substituted vinyl iodides. It represents an efficient protocol to access a diverse range of tetra-substituted vinyl iodides starting from simple materials in a one-pot fashion, featuring mild reaction conditions, ease of operation, and broad substrate scope.
Collapse
Affiliation(s)
- Xiaobao Zeng
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Zhenfeng Cheng
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Yushan Xie
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Yunhui Gu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| |
Collapse
|
3
|
Shi X, Song T, Li Q, Guo X, Yang Y. Mesoporous Graphitic Carbon Nitride Photocatalyzed Switchable Divergent Perfluoroalkylation of Terminal Alkynes. Org Lett 2022; 24:8724-8728. [DOI: 10.1021/acs.orglett.2c03814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Xiaolin Shi
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao, Shandong 266101, People’s Republic of China
| | - Tao Song
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao, Shandong 266101, People’s Republic of China
- Shandong Energy Institute, Qingdao, Shandong 266101, People’s Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, People’s Republic of China
| | - Qinglin Li
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao, Shandong 266101, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xiuling Guo
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao, Shandong 266101, People’s Republic of China
| | - Yong Yang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao, Shandong 266101, People’s Republic of China
- Shandong Energy Institute, Qingdao, Shandong 266101, People’s Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, People’s Republic of China
| |
Collapse
|
4
|
Tang S, Liu T, Liu J, He J, Hong Y, Zhou H, Liu YL. Recent Advances in Photoinduced Perfluoroalkylation Using Perfluoroalkyl Halides as the Radical Precursors. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractPerfluoroalkylation is one of the most important methods for the introduction of multiple fluorine atoms into organic molecules in a single step. The use of photoinduced technology is a common strategy that uses the outstanding oxidation or reduction ability of a photoredox catalyst in its excited state to generate perfluoroalkyl radicals from perfluoroalkyl halides. The perfluoroalkyl radicals thus obtained can undergo various subsequent reactions under mild conditions, such as ATRA reaction of alkenes, alkynes, and 1,n-enynes; carbo/heteroperfluoroalkylation of alkenes and isocyanides; and C–H/F perfluoroalkylation. This allows the expedient incorporation of various perfluoroalkyl groups into the molecular motifs. Perfluorinated functional groups are still in demand in pharmaceutical and material sciences; this short review discusses recent advances in photoinduced perfluoroalkylation methodologies and technologies.1 Introduction2 Photocatalytic Perfluoroalkylation of Alkenes, Alkynes, and 1,n- Enynes3 Photocatalytic Carboperfluoroalkylation or Heteroperfluoroalkylation of Alkenes, Alkynes, Isocyanides, and Hydrazones4 Photocatalytic ATRE Reactions of Alkenes with Perfluoroalkyl Halides5 Photocatalytic C–X (X = H, F) Bond Perfluoroalkylation6 Continuous Flow Strategies in Photocatalytic Perfluoroalkylation7 Conclusions
Collapse
|
5
|
Liu R, Cheng SC, Xiao Y, Chan KC, Tong KM, Ko CC. Recyclable Polymer-Supported Iridium-Based Photocatalysts for Photoredox Organic Transformations. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Yerien DE, Barata-Vallejo S, Mansilla D, Postigo A. Rose Bengal-photocatalyzed perfluorohexylation reactions of organic substrates in water. Applications to late-stage syntheses. Photochem Photobiol Sci 2022; 21:803-812. [PMID: 35083730 DOI: 10.1007/s43630-021-00154-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
The Rose Bengal-photocatalyzed perfluorohexylation of olefins, alkynes, and electron-rich aromatic compounds in water was achieved employing perfluorohexyl iodide as fluoroalkyl source and TMEDA as sacrificial donor under green LED irradiation. Alkenes and alkynes rendered products derived from the atom transfer radical addition (ATRA) pathway, and in the case of alkynes, exclusively as E-stereoisomers. These are the first examples of photocatalyzed ATRA reactions carried out excursively in water alone. The reactions of aromatic compounds under the current protocol in water present the advantage of employing a perfluoroalkyl iodide (C6F13-I) as source of perfluorohexyl radicals. Examples of photocatalytic late-stage incorporations of fluoroalkyl moieties into two commercial drugs of widespread use are reported.
Collapse
Affiliation(s)
- Damian E Yerien
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, CP 1113, Buenos Aires, Argentina
| | - Sebastián Barata-Vallejo
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, CP 1113, Buenos Aires, Argentina. .,ISOF, Consiglio Nazionale Delle Ricerche, Via P. Gobetti 101, 40129, Bologna, Italy.
| | - Daniela Mansilla
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, CP 1113, Buenos Aires, Argentina
| | - Al Postigo
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, CP 1113, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Li W, Liang C, Luo B, Wang Z, Li H, Li X, Yang H, Li H. Perfluoroalkylation of Terminal Alkynes with Perfluoroalkyl Iodides Catalyzed by an Iron Salt. J Org Chem 2022; 87:1554-1558. [PMID: 34981920 DOI: 10.1021/acs.joc.1c02522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The one-step, direct perfluoroalkylation of terminal alkynes with perfluoroalkyl iodides has been developed in which a simple ligandless iron salt is employed as the catalyst. Various perfluoroalkylated alkynes could be afforded in good to excellent yields with good functional group compatibility. Preliminary mechanistic studies suggest the involvement of the perfluoroalkyl radical in the catalytic cycle and the perfluoroalkylated alkenyl iodides as intermediates. The method provides straight, streamlined, and sustainable access to perfluoroalkylated acetylenes.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Changfa Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Baogui Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhenhui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hengyuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaofeng Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huanjian Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huaifeng Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
8
|
Xiao Y, Cheng SC, Feng Y, Shi Z, Huang Z, Tsui G, Arava CM, Roy VAL, Ko CC. Photoredox Catalysis for the Fabrication of Water-Repellent Surfaces with Application for Oil/Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11592-11602. [PMID: 34558895 DOI: 10.1021/acs.langmuir.1c01926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Silanization processes with perfluoroalkyl silanes have been demonstrated to be effective in developing advanced materials with many functional properties, including hydrophobicity, water repellency, and self-cleaning properties. However, practical industrial applications of perfluoroalkyl silanes are limited by their extremely high cost. On the basis of our recent work on photoredox catalysis for amidation with perfluoroalkyl iodides, its application for surface chemical modification on filter paper, as an illustrative example, has been developed and evaluated. Before photocatalytic amidation, the surface is functionalized with amine functional groups by silanization with 3-(trimethoxysilyl)propylamine. All chemically modified surfaces have been fully characterized by attenuated total reflection infrared (ATR-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), and three-dimensional (3D) profiling to confirm the successful silanization and photocatalytic amidation. After surface modification of the filter papers with perfluoroalkanamide, they show high water repellency and hydrophobicity with contact angles over 120°. These filter papers possess high wetting selectivity, which can be used to effectively separate the organic and aqueous biphasic mixtures. The perfluoroalkanamide-modified filter papers can be used for separating organic/aqueous biphasic mixtures over many cycles without lowering the separating efficiency, indicating their reusability and excellent durability.
Collapse
Affiliation(s)
- Yelan Xiao
- Department of Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Shun-Cheung Cheng
- Department of Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Yongyi Feng
- Department of Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Zhen Shi
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China
| | - Zhenjia Huang
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Gary Tsui
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Clement Manohar Arava
- Department of Materials Science & Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | - Vellaisamy A L Roy
- James Watt School of Engineering, University of Glasgow, Glasgow G128QQ, United Kingdom
| | - Chi-Chiu Ko
- Department of Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| |
Collapse
|
9
|
Yamamoto Y, Kuroyanagi E, Suzuki H, Yasui T. Catalyst‐Free C
sp
−C
sp
3
Cross‐Coupling of Bromodifluoroacetamides with 1‐Iodoalkynes under Visible‐Light Irradiation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yoshihiko Yamamoto
- Department of Basic Medicinal Sciences Graduate School of Pharmaceutical Sciences Nagoya University, Chikusa Nagoya 464-8601 Japan
| | - Eisuke Kuroyanagi
- Department of Basic Medicinal Sciences Graduate School of Pharmaceutical Sciences Nagoya University, Chikusa Nagoya 464-8601 Japan
| | - Harufumi Suzuki
- Department of Basic Medicinal Sciences Graduate School of Pharmaceutical Sciences Nagoya University, Chikusa Nagoya 464-8601 Japan
| | - Takeshi Yasui
- Department of Basic Medicinal Sciences Graduate School of Pharmaceutical Sciences Nagoya University, Chikusa Nagoya 464-8601 Japan
| |
Collapse
|
10
|
Song Y, Wang X, Wang L, Dong Z, Fan S, Huang P, Zeng J, Cheng P. Visible-light promoted allylation of N-substituted tetrahydroisoquinoline using riboflavin tetra-acetate as photocatalyst. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Tian M, Liu M. The exploration of deoxygenation reactions for alcohols and derivatives using earth-abundant reagents. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In Earth matter evolution, the deoxygenation process plays a central role as plant and animal remains, which are composed by highly oxygenated molecules, were gradually deoxygenated into hydrocarbons to give fossil fuels deep in the Earth crust. The understanding of this process is becoming crucial to the entire world and to the sustainable development of mankind. This review provides a brief summary of the extensive deoxygenation research under mild, potentially sustainable conditions. We also summarize some challenges and opportunities for potential deoxygenation reactions in the future.
Collapse
Affiliation(s)
- Miao Tian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , 222 Tianshui South Road, Chengguan Dist. , Lanzhou , Gansu , 730000 , China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University , Shenyang , Liaoning , 110034 , China
| | - Mingxin Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , 222 Tianshui South Road, Chengguan Dist. , Lanzhou , Gansu , 730000 , China
- Department of Chemistry and FRQNT Centre in Green Chemistry and Catalysis , McGill University , 801 Sherbrooke Ouest , Montreal , QC , H3A 0B8 , Canada
| |
Collapse
|
12
|
Zhang Z, Li X, Shi D. Visible‐Light‐Promoted Oxy‐difluoroalkylation of Aryl Alkynes for the Synthesis of
β
‐Fluoroenones and
α
‐Difluoroalkyl Ketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhong Zhang
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center Shandong University 72 Binhai Road Qingdao 266237 Shandong People's Republic of China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center Shandong University 72 Binhai Road Qingdao 266237 Shandong People's Republic of China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center Shandong University 72 Binhai Road Qingdao 266237 Shandong People's Republic of China
- Laboratory for Marine Biology and Biotechnology Pilot National Laboratory for Marine Science and Technology 168 Wenhai Road Qingdao 266237 Shandong People's Republic of China
| |
Collapse
|
13
|
Meng Z, Zhang X, Shi M. Visible-light mediated cascade cyclization of ene-vinylidenecyclopropanes: access to fluorinated heterocyclic compounds. Org Chem Front 2021. [DOI: 10.1039/d1qo00540e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A visible-light mediated fluorinated cyclization of ene-vinylidenecyclopropanes along with mechanistic investigations is presented.
Collapse
Affiliation(s)
- Zhe Meng
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xiaoyu Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
14
|
Li XR, Li WX, Zhang ZW, Shen C, Zhou X, Chu XQ, Rao W, Shen ZL. Stereoselective synthesis of fluoroalkylated ( Z)-alkene via nickel-catalyzed and iron-mediated hydrofluoroalkylation of alkynes. Org Chem Front 2021. [DOI: 10.1039/d1qo00983d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient nickel-catalyzed, iron-mediated hydrofluoroalkylation of alkynes with bromodifluoroacetate or perfluoroalkyl iodide, which proceeded smoothly to give fluoroalkylated (Z)-alkenes with high stereocontrol (up to 99 : 1 Z/E), was developed.
Collapse
Affiliation(s)
- Xiang-Rui Li
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wen-Xin Li
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhuo-Wen Zhang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chuanji Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Xiaocong Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|