1
|
Sidorkiewicz M. The Cardioprotective Effects of Polyunsaturated Fatty Acids Depends on the Balance Between Their Anti- and Pro-Oxidative Properties. Nutrients 2024; 16:3937. [PMID: 39599723 PMCID: PMC11597422 DOI: 10.3390/nu16223937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are not only structural components of membrane phospholipids and energy storage molecules in cells. PUFAs are important factors that regulate various biological functions, including inflammation, oxidation, and immunity. Both n-3 and n-6 PUFAs from cell membranes can be metabolized into pro-inflammatory and anti-inflammatory metabolites that, in turn, influence cardiovascular health in humans. The role that PUFAs play in organisms depends primarily on their structure, quantity, and the availability of enzymes responsible for their metabolism. n-3 PUFAs, such as eicosapentaenoic (EPA) and docosahexaenoic (DHA), are generally known for anti-inflammatory and atheroprotective properties. On the other hand, n-6 FAs, such as arachidonic acid (AA), are precursors of lipid mediators that display mostly pro-inflammatory properties and may attenuate the efficacy of n-3 by competition for the same enzymes. However, a completely different light on the role of PUFAs was shed due to studies on the influence of PUFAs on new-onset atrial fibrillation. This review analyzes the role of PUFAs and PUFA derivatives in health-related effects, considering both confirmed benefits and newly arising controversies.
Collapse
Affiliation(s)
- Malgorzata Sidorkiewicz
- Department of Medical Biochemistry, Faculty of Health Sciences, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
2
|
Mohammad-Rafiei F, Negahdari S, Tahershamsi Z, Gheibihayat SM. Interface between Resolvins and Efferocytosis in Health and Disease. Cell Biochem Biophys 2024; 82:53-65. [PMID: 37794303 DOI: 10.1007/s12013-023-01187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Acute inflammation resolution acts as a vital process for active host response, tissue support, and homeostasis maintenance, during which resolvin D (RvD) and E (RvE) as mediators derived from omega-3 polyunsaturated fatty acids display specific and stereoselective anti-inflammations like restricting neutrophil infiltration and pro-resolving activities. On the other side of the coin, potent macrophage-mediated apoptotic cell clearance, namely efferocytosis, is essential for successful inflammation resolution. Further studies mentioned a linkage between efferocytosis and resolvins. For instance, resolvin D1 (RvD1), which is endogenously formed from docosahexaenoic acid within the inflammation resolution, thereby provoking efferocytosis. There is still limited information regarding the mechanism of action of RvD1-related efferocytosis enhancement at the molecular level. The current review article was conducted to explore recent data on how the efferocytosis process and resolvins relate to each other during the inflammation resolution in illness and health. Understanding different aspects of this connection sheds light on new curative approaches for medical conditions caused by defective efferocytosis and disrupted inflammation resolution.
Collapse
Affiliation(s)
- Fatemeh Mohammad-Rafiei
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Samira Negahdari
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Munich, Germany.
| |
Collapse
|
3
|
Ervik K, Reinertsen AF, Koenis DS, Dalli J, Hansen TV. Stereoselective Synthesis, Pro-resolution, and Anti-inflammatory Actions of RvD5 n-3 DPA. JOURNAL OF NATURAL PRODUCTS 2023; 86:2546-2553. [PMID: 37879110 PMCID: PMC10683074 DOI: 10.1021/acs.jnatprod.3c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Indexed: 10/27/2023]
Abstract
The methyl ester of resolvin D5n-3 DPA, a lipid mediator biosynthesized from the omega-3 fatty acid n-3 docosapentaenoic acid, was stereoselectively prepared in 8% yield over 12 steps (longest linear sequence). The key steps for the introduction of the two stereogenic secondary alcohols were an organocatalyzed oxyamination and the Midland Alpine borane reduction. For the assembly of the carbon chain, the Sonogashira cross-coupling reaction and the Takai olefination were utilized. The physical properties, including retention time in liquid chromatography and tandem mass spectra, of the synthetic material were matched against material from human peripheral blood and mouse infectious exudates. Synthetic RvD5n-3 DPA, obtained just prior to biological experiments, displayed potent leukocyte-directed activities, upregulating the ability of neutrophils and macrophages to phagocytose bacteria, known as hallmark bioactions of specialized pro-resolving endogenous mediators.
Collapse
Affiliation(s)
- Karina Ervik
- Department
of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - Amalie F. Reinertsen
- Department
of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - Duco S. Koenis
- Lipid
Mediator Unit, Center for Biochemical Pharmacology, William Harvey
Research, Institute, Barts and The London School of Medicine, Queen Mary University of London Charterhouse Square, London EC1M 6BQ, U.K.
| | - Jesmond Dalli
- Lipid
Mediator Unit, Center for Biochemical Pharmacology, William Harvey
Research, Institute, Barts and The London School of Medicine, Queen Mary University of London Charterhouse Square, London EC1M 6BQ, U.K.
| | - Trond V. Hansen
- Department
of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| |
Collapse
|
4
|
Nshimiyimana R, Glynn SJ, Serhan CN, Petasis NA. Stereocontrolled total synthesis of Resolvin D4 and 17( R)-Resolvin D4. Org Biomol Chem 2023; 21:1667-1673. [PMID: 36345797 PMCID: PMC9974885 DOI: 10.1039/d2ob01697d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The total synthesis of Resolvin D4 and its 17(R)-hydroxy-epimer is reported. These lipid-based natural products are biosynthesized from docosahexaenoic acid (DHA, C22:6) during the body's rapid cellular and chemical response to injurious stimuli and are part of a large class of bioactive molecules that resolve inflammation. Our convergent synthesis employed a chiral pool strategy starting from glycidol derivatives and D-erythrose to introduce stereogenic centers. A copper(I)-mediated cross coupling between propargyl bromide and terminal acetylenic precursors yielded core structures of late-stage key intermediates. A simultaneous Lindlar reduction of the skipped diynyl moiety followed by silyl group cleavage securely completed the synthesis. The synthetic availability of these molecules helped further elucidate their stereoselective biofunctions.
Collapse
Affiliation(s)
- Robert Nshimiyimana
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089, USA.
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen J Glynn
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089, USA.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nicos A Petasis
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
5
|
Classes of Lipid Mediators and Their Effects on Vascular Inflammation in Atherosclerosis. Int J Mol Sci 2023; 24:ijms24021637. [PMID: 36675152 PMCID: PMC9863938 DOI: 10.3390/ijms24021637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/18/2023] Open
Abstract
It is commonly believed that the inactivation of inflammation is mainly due to the decay or cessation of inducers. In reality, in connection with the development of atherosclerosis, spontaneous decay of inducers is not observed. It is now known that lipid mediators originating from polyunsaturated fatty acids (PUFAs), which are important constituents of all cell membranes, can act in the inflamed tissue and bring it to resolution. In fact, PUFAs, such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are precursors to both pro-inflammatory and anti-inflammatory compounds. In this review, we describe the lipid mediators of vascular inflammation and resolution, and their biochemical activity. In addition, we highlight data from the literature that often show a worsening of atherosclerotic disease in subjects deficient in lipid mediators of inflammation resolution, and we also report on the anti-proteasic and anti-thrombotic properties of these same lipid mediators. It should be noted that despite promising data observed in both animal and in vitro studies, contradictory clinical results have been observed for omega-3 PUFAs. Many further studies will be required in order to clarify the observed conflicts, although lifestyle habits such as smoking or other biochemical factors may often influence the normal synthesis of lipid mediators of inflammation resolution.
Collapse
|
6
|
Major structure-activity relationships of resolvins, protectins, maresins and their analogues. Future Med Chem 2022; 14:1943-1960. [PMID: 36449363 DOI: 10.4155/fmc-2022-0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Resolvins, protectins and maresins are a series of polyunsaturated fatty acid-derived molecules which play important roles in the resolution of inflammation. They are termed specialized proresolving mediators and facilitate a return to homeostasis following an inflammatory response. These molecules are currently the focus of intensive investigation, primarily for their ability to suppress inflammation in chronic disease states. Researchers have employed different synthetic approaches to assess whether various structural modifications of these compounds could provide access to future therapeutics. This review summarizes the modifications made thus far and focuses on the key structure-activity relationships which have been uncovered for resolvins, protectins, maresins and their analogues.
Collapse
|
7
|
Arai S, Fujiwara K, Kojima M, Aoki-Saito H, Yatomi M, Saito T, Koga Y, Fukuda H, Watanabe M, Matsunaga S, Hisada T, Shuto S. Design and Synthesis of Cyclopropane Congeners of Resolvin E3, an Endogenous Pro-Resolving Lipid Mediator, as Its Stable Equivalents. J Org Chem 2022; 87:10501-10508. [PMID: 35866588 DOI: 10.1021/acs.joc.2c01110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Resolvins are pro-resolving lipid mediators with highly potent anti-inflammatory effects. Because of their polyunsaturated structures, however, they are unstable to oxygen as a drug prototype. To address this issue, we designed and synthesized CP-RvE3 as oxidatively stable congeners of RvE3 by replacing the cis-olefin with a cis-cyclopropane to avoid the unstable bisallylic structure. Although the oxidative stabilities of CP-RvE3 were not improved, β-CP-RvE3 was 3.7 times more metabolically stable than RvE3. Thus, we identified β-CP-RvE3 as a metabolically stable equivalent.
Collapse
Affiliation(s)
- Shota Arai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Koichi Fujiwara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Haruka Aoki-Saito
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Masakiyo Yatomi
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Tsugumichi Saito
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Yasuhiko Koga
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Hayato Fukuda
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Mizuki Watanabe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| | - Takeshi Hisada
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
8
|
Reinertsen AF, Primdahl KG, De Matteis R, Dalli J, Hansen TV. Stereoselective Synthesis, Configurational Assignment and Biological Evaluations of the Lipid Mediator RvD2 n-3 DPA. Chemistry 2022; 28:e202103857. [PMID: 34890076 PMCID: PMC9305452 DOI: 10.1002/chem.202103857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/10/2022]
Abstract
Herein we report the first total synthesis of RvD2n-3 DPA , an endogenously formed mediator biosynthesized from the omega-3 fatty acid n-3 docosapentaenoic acid. The key steps are the Midland Alpine borane reduction, Sonogashira cross-coupling reactions, and a Z-selective alkyne reduction protocol, yielding RvD2n-3 DPA methyl ester in 13 % yield over 12 steps (longest linear sequence). The physical property data (UV chromophore, chromatography and MS/MS fragmentation) of the synthetic lipid mediator matched those obtained from biologically produced material. Moreover, synthetic RvD2n-3 DPA also carried the potent biological activities of enhancing macrophage uptake of Staphylococcus aureus and zymosan A bioparticles.
Collapse
Affiliation(s)
- Amalie F. Reinertsen
- Department of PharmacySection for Pharmaceutical ChemistryUniversity of OsloP.O. Box 10680316OsloNorway
| | - Karoline G. Primdahl
- Department of PharmacySection for Pharmaceutical ChemistryUniversity of OsloP.O. Box 10680316OsloNorway
| | - Roberta De Matteis
- Lipid Mediator UnitCenter for Biochemical PharmacologyWilliam Harvey Research InstituteBarts and The London School of MedicineQueen Mary University of LondonCharterhouse SquareLondonEC1M 6BQUnited Kingdom
| | - Jesmond Dalli
- Lipid Mediator UnitCenter for Biochemical PharmacologyWilliam Harvey Research InstituteBarts and The London School of MedicineQueen Mary University of LondonCharterhouse SquareLondonEC1M 6BQUnited Kingdom
| | - Trond V. Hansen
- Department of PharmacySection for Pharmaceutical ChemistryUniversity of OsloP.O. Box 10680316OsloNorway
| |
Collapse
|
9
|
Vigor C, Balas L, Guy A, Bultel-Poncé V, Reversat G, Galano JM, Durand T, Oger C. Isoprostanoids, Isofuranoids and Isoketals ‐ From Synthesis to Lipidomics. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Claire Vigor
- Institut des Biomolecules Max Mousseron Bioactive Lipid Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Laurence Balas
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Alexandre Guy
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Valérie Bultel-Poncé
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard1919 route de Mende 34293 Montpellier FRENCH POLYNESIA
| | - Guillaume Reversat
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Jean-Marie Galano
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Thierry Durand
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Camille Oger
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| |
Collapse
|
10
|
Resolution of Inflammation in Acute Graft-Versus-Host-Disease: Advances and Perspectives. Biomolecules 2022; 12:biom12010075. [PMID: 35053223 PMCID: PMC8773806 DOI: 10.3390/biom12010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
Inflammation is an essential reaction of the immune system to infections and sterile tissue injury. However, uncontrolled or unresolved inflammation can cause tissue damage and contribute to the pathogenesis of various inflammatory diseases. Resolution of inflammation is driven by endogenous molecules, known as pro-resolving mediators, that contribute to dampening inflammatory responses, promoting the resolution of inflammation and the recovery of tissue homeostasis. These mediators have been shown to be useful to decrease inflammatory responses and tissue damage in various models of inflammatory diseases. Graft-versus-host disease (GVHD) is a major unwanted reaction following allogeneic hematopoietic stem cell transplantation (allo-HSCT) and is characterized by an exacerbated inflammatory response provoked by antigen disparities between transplant recipient and donor. There is no fully effective treatment or prophylaxis for GVHD. This review explores the effects of several pro-resolving mediators and discusses their potential use as novel therapies in the context of GVHD.
Collapse
|
11
|
Tiberi M, Chiurchiù V. Specialized Pro-resolving Lipid Mediators and Glial Cells: Emerging Candidates for Brain Homeostasis and Repair. Front Cell Neurosci 2021; 15:673549. [PMID: 33981203 PMCID: PMC8107215 DOI: 10.3389/fncel.2021.673549] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes and oligodendrocytes are known to play critical roles in the central nervous system development, homeostasis and response to injury. In addition to their well-defined functions in synaptic signaling, blood-brain barrier control and myelination, it is now becoming clear that both glial cells also actively produce a wide range of immune-regulatory factors and engage in an intricate communication with neurons, microglia or with infiltrated immune cells, thus taking a center stage in both inflammation and resolution processes occurring within the brain. Resolution of inflammation is operated by the superfamily of specialized pro-resolving lipid mediators (SPMs), that include lipoxins, resolvins, protectins and maresins, and that altogether activate a series of cellular and molecular events that lead to spontaneous regression of inflammatory processes and restoration of tissue homeostasis. Here, we review the manifold effects of SPMs on modulation of astrocytes and oligodendrocytes, along with the mechanisms through which they either inhibit inflammatory pathways or induce the activation of protective ones. Furthermore, the possible role of SPMs in modulating the cross-talk between microglia, astrocytes and oligodendrocytes is also summarized. This SPM-mediated mechanism uncovers novel pathways of immune regulation in the brain that could be further exploited to control neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Marta Tiberi
- Laboratory of Resolution of Neuroinflammation, European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Valerio Chiurchiù
- Laboratory of Resolution of Neuroinflammation, European Center for Brain Research, IRCCS Santa Lucia Foundation, Rome, Italy.,Institute of Translational Pharmacology, National Research Council, Rome, Italy
| |
Collapse
|
12
|
Reinertsen AF, Primdahl KG, Shay AE, Serhan CN, Hansen TV, Aursnes M. Stereoselective Synthesis and Structural Confirmation of the Specialized Pro-Resolving Mediator Resolvin E4. J Org Chem 2021; 86:3535-3545. [PMID: 33534565 PMCID: PMC7901022 DOI: 10.1021/acs.joc.0c02913] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Herein, we report the stereoselective
and convergent synthesis
of resolvin E4, a newly identified specialized pro-resolving mediator.
This synthesis proves the absolute configuration and exact olefin
geometry. Key elements of the successful strategy include a highly
stereoselective MacMillan organocatalytic oxyamination, a Midland
Alpine borane reduction, and the use of a 1,4-pentadiyne unit as a
linchpin building block. The application of reaction telescoping in
several of the synthetic transformations enabled the preparation of
the resolvin E4 methyl ester in 10% yield over 10 steps (longest linear
sequence). The physical property (UV–Vis and LC–MS/MS)
data of synthetic resolvin E4 matched those obtained from biologically
produced material.
Collapse
Affiliation(s)
- Amalie Føreid Reinertsen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - Karoline Gangestad Primdahl
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - Ashley Elizabeth Shay
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Hale Building for Transformative Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Charles Nicholas Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Hale Building for Transformative Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Trond Vidar Hansen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - Marius Aursnes
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| |
Collapse
|