1
|
Wang W, Li X, Chen X, Sun M, Wang G. Aqueous Binder with Self-Emulsifying Characteristics for Practical Si/C Anode in Lithium-Ion Batteries. Chemistry 2025; 31:e202403924. [PMID: 39791927 DOI: 10.1002/chem.202403924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
Silicon/carbon (Si/C) materials have achieved commercial applications as a solution to the problems of large volume expansion and short lifespan of silicon-based anodes in lithium-ion batteries. However, the potential risk of structural fracture and localized differences in surface adsorption properties lead to difficulties in maintaining the structural integrity of Si/C anodes using conventional binders during repeated lithiation/delithiation. Herein, an aqueous binder (PVA-g-M) based on polyvinyl alcohol (PVA) grafted methacrylic acid (MAA) obtained by self-emulsifying emulsion polymerization is reported. The introduction of carboxyl groups of MAA enables PVA-g-M to form more hydrogen bonds, thereby enhancing both the cohesion of the binder film and its adhesion to silicon-based surface. Simultaneously, the methyl-containing segments of MAA can wet the carbon-based surface, thereby enhancing the adhesion of PVA-g-M to carbonaceous materials. In addition, the hydroxyl groups on both the PVA segments and the silicon surface can be esterified with the carboxyl groups during the heat treatment, thus further improving the bonding strength. As-prepared Si/C anodes with PVA-g-M binder can significantly inhibit the electrode volume expansion and maintain high structural integrity during cycling as well as form SEIs with high lithium fluoride content, showing excellent cycling stability (81.1 % capacity retention after 300 cycles).
Collapse
Affiliation(s)
- Wenqiang Wang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xvfeng Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaofeng Chen
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minqiang Sun
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Energy New Materials Technology Co., Ltd, Shanghai, 201399, China
| | - Gengchao Wang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
2
|
Kwak M, Min SC. Monitoring Meat Freshness with Intelligent Colorimetric Labels Containing Red Cabbage Anthocyanins Copigmented with Gelatin and Gallic Acid. Foods 2024; 13:3464. [PMID: 39517248 PMCID: PMC11545453 DOI: 10.3390/foods13213464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Polyvinyl alcohol (PVA)-based pH-responsive color indicators were developed using red cabbage anthocyanin (Anth) copigmented with gelatin and gallic acid (GA). The indicator prepared with gelatin and GA (GA/gelatin/Anth/PVA) was highly resistant to light exposure. GA/gelatin/Anth/PVA exhibited distinct color changes in pH 2-11 buffer solutions and stable color indication in acidic and neutral solid systems (pH 2 and 7) at 97% relative humidity. GA/gelatin/Anth/PVA exhibited the highest sensitivity to dimethylamine, followed by ammonia and trimethylamine. The addition of gelatin and GA facilitated hydrogen bonding, which enhanced thermal stability and water solubility without compromising tensile properties. A color change from purple to blue signaled spoilage when total volatile basic nitrogen values for beef and squid reached 21.0 and 37.8 mg/100 g, respectively. The GA/gelatin/Anth/PVA indicator shows potential for indicating the freshness of raw beef.
Collapse
Affiliation(s)
| | - Sea C. Min
- Department of Food Science and Technology, Seoul Women’s University, 621 Hwarang-ro, Nowon-gu, Seoul 01797, Republic of Korea
| |
Collapse
|
3
|
Dong C, Lu M, Fan H, Jin Z. Cooperation of Zr(IV)-N and Zr(IV)-O coordinate bonds of Zr(IV)-amide ensures the transparent and tough polyacrylamide hydrogels. J Mater Chem B 2022; 10:9258-9265. [PMID: 36326062 DOI: 10.1039/d2tb01496c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Developing advanced soft machines and tissue engineering for load-bearing cartilage or tendons requires tough hydrogels. However, the construction of double or triple crosslinked networks for these tough hydrogels, i.e., a strong network crosslinked by covalent bonds and one or two sacrificial networks built by hydrogen bonds or coordinate bonds, generally asks for multiple steps. It remains a challenge to develop hydrogels with a combination of excellent toughness and a high content of water through the time-saving one-pot process. This study demonstrates that this puzzle could be solved through engineering zirconium(IV)-amide coordinate bonds. To be specific, the combination of strong Zr(IV)-O and moderate Zr(IV)-N coordinate bonds in Zr-polyacrylamide (Zr-PAAm) hydrogels has the advantage that they are usually generated through multiple cross-linked networks. Compared to chemical crosslinked PAAm hydrogels, the highly transparent Zr-PAAm hydrogels crosslinked by Zr(NO3)4 displayed a 26-times increase in fracture stress, 4-times in fracture strain, 6-times in elastic modulus, and over 250-times in toughness. Besides, the mechanical properties of Zr-PAAm hydrogels could be altered over a wide range via changing the anion species, showing a dependence on the Hofmeister effect. The co-existence of Zr(IV)-N and Zr(IV)-O has been confirmed through XPS and FTIR characterizations. In particular, the effect of Zr(IV)-N in Zr-PAAm hydrogels has been verified by comparing the property changes of Zr-PAAm hydrogels before and after swelling in water, in which the Zr(IV)-N in the as-prepared hydrogels was replaced by Zr(IV)-O in the swollen gels. With ultra-stretchability and high transparency, the colorless Zr-PAAm hydrogels displayed rich interference colors under stretching, which brought great potential in anti-counterfeiting materials.
Collapse
Affiliation(s)
- Chenglong Dong
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| | - Mengfan Lu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| | - Hailong Fan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Zhaoxia Jin
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| |
Collapse
|
4
|
Miao L, Wang X, Li S, Tu Y, Hu J, Huang Z, Lin S, Gui X. An Ultra-Stretchable Polyvinyl Alcohol Hydrogel Based on Tannic Acid Modified Aramid Nanofibers for Use as a Strain Sensor. Polymers (Basel) 2022; 14:polym14173532. [PMID: 36080607 PMCID: PMC9460429 DOI: 10.3390/polym14173532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The mechanical performance is critical for hydrogels that are used as strain sensors. p-Aramid nanofiber (ANF) is preferable as an additive to the reinforce the mechanical performance of a poly(vinyl alcohol) (PVA). However, due to the limited hydrogen bond sites, the preparation of ultra-stretchable, ANF-based hydrogel strain sensor is still a challenge. Herein, we reported an ultra-stretchable PVA hydrogel sensor based on tea stain-inspired ANFs. Due to the presence of numerous phenol groups in the tannic acid (TA) layer, the interaction between PVA and the ANFs was significantly enhanced even though the mass ratio of TA@ANF in the hydrogel was 2.8 wt‰. The tensile breaking modulus of the PVA/TA@ANF/Ag hydrogel sensor was increased from 86 kPa to 326 kPa, and the tensile breaking elongation was increased from 356% to 602%. Meanwhile, the hydrogel became much softer, and no obvious deterioration of the flexibility was observed after repeated use. Moreover, Ag NPs were formed in situ on the surfaces of the ANFs, which imparted the sensor with electrical conductivity. The hydrogel-based strain sensor could be used to detect the joint movements of a finger, an elbow, a wrist, and a knee, respectively. This ultra-stretchable hydrogel described herein was a promising candidate for detecting large-scale motions.
Collapse
Affiliation(s)
- Lei Miao
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan 528000, China
| | - Xiao Wang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi Li
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Tu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou 510650, China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou 510650, China
- Incubator of Nanxiong CAS Co., Ltd., Nanxiong 512400, China
| | - Jiwen Hu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou 510650, China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou 510650, China
- Incubator of Nanxiong CAS Co., Ltd., Nanxiong 512400, China
- Correspondence: ; Tel.: +86-020-85232307
| | - Zhenzhu Huang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou 510650, China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou 510650, China
- Incubator of Nanxiong CAS Co., Ltd., Nanxiong 512400, China
| | - Shudong Lin
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou 510650, China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou 510650, China
- Incubator of Nanxiong CAS Co., Ltd., Nanxiong 512400, China
| | - Xuefeng Gui
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou 510650, China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou 510650, China
- Incubator of Nanxiong CAS Co., Ltd., Nanxiong 512400, China
| |
Collapse
|
5
|
Luo Y, Pauer W, Luinstra GA. Fabrication of Thermo-Responsive Controllable Shape-Changing Hydrogel. Gels 2022; 8:531. [PMID: 36135243 PMCID: PMC9498808 DOI: 10.3390/gels8090531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Temperature response double network (DN) hydrogels comprising a network formed by polymerization of methacrylic acid (MA) modified PVA, N,N'-methylene bis(acrylamide), N-isopropylacryl amide (NIPAM), and one formed from crystalline polyvinyl alcohol (PVA) are prepared in a 3D printed tailor-made mold. The (PVA-MA)-g-PNIPAAm thermoset intermediate is formed in water by a radical, photo-initiated process, and in the presence of dissolved PVA polymers. A subsequent freezing-thawing sequence induces the crystallization of the PVA network, which forms a second network inside the thermoset NIPAM polymer. The prepared hydrogel is thermoresponsive by the phase transition of PNIPAAm segments (T ≈ 32 °C) and has good mechanical properties (tensile strength 1.23 MPa, compressive strength 1.47 MPa). Thermal cycling between room temperature at 40 or 50 °C shows the product converses from a virgin-state to a steady-state, which most likely involves the reorganization of PVA crystals. The swelling-deswelling cycles remain clear at a length change of about 13%.
Collapse
Affiliation(s)
| | | | - Gerrit A. Luinstra
- Institut für Technische und Makromolekulare Chemie, Universität Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
6
|
Wu Y, Liu T, Shi Y, Wang H. Dramatically enhancing mechanical properties of hydrogels by drying reactive polymers at elevated temperatures to introduce strong physical and chemical crosslinks. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Wu H, Chen J, Kim J, Zhu P, Zhu J, Gao Q, Gao C. Facile preparation of transparent poly (γ‐glutamic acid) modified poly (vinyl alcohol) hydrogels with high tensile strength and toughness. J Appl Polym Sci 2022. [DOI: 10.1002/app.52204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hailin Wu
- School of Chemistry and Chemical Engineering Yangzhou University Jiangsu, Yangzhou China
| | - Jing Chen
- School of Chemistry and Chemical Engineering Yangzhou University Jiangsu, Yangzhou China
| | | | - Peizhi Zhu
- School of Chemistry and Chemical Engineering Yangzhou University Jiangsu, Yangzhou China
| | - Jiadeng Zhu
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Qiang Gao
- School of Chemistry and Chemical Engineering Yangzhou University Jiangsu, Yangzhou China
| | - Chunxia Gao
- School of Chemistry and Chemical Engineering Yangzhou University Jiangsu, Yangzhou China
| |
Collapse
|
8
|
Serbezeanu D, Bargan A, Homocianu M, Aflori M, Rîmbu CM, Enache AA, Vlad-Bubulac T. Electrospun Polyvinyl Alcohol Loaded with Phytotherapeutic Agents for Wound Healing Applications. NANOMATERIALS 2021; 11:nano11123336. [PMID: 34947686 PMCID: PMC8705401 DOI: 10.3390/nano11123336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 12/28/2022]
Abstract
In this paper, hydroalcoholic solutions of Thymus vulgaris, Salvia officinalis folium, and Hyperici herba were used in combination with poly (vinyl alcohol) with the aim of developing novel poly (vinyl alcohol)-based nanofiber mats loaded with phytotherapeutic agents via the electrospinning technique. The chemical structure and morphology of the polymeric nanofibers were investigated using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The addition of Thymus vulgaris, Salvia officinalis folium, and Hyperici herba extracts to the pure polyvinyl alcohol fibers led to changes in the morphology of the fibers and a reduction in the fibers’ diameter, from 0.1798 µm in the case of pure polyvinyl alcohol to 0.1672, 0.1425, and 0.1369 µm in the case of polyvinyl alcohol loaded with Thymus vulgaris, Salvia officinalis folium, and Hyperici herba, respectively. The adapted Folin–Ciocalteu (FC) method, which was used to determine the total phenolic contents, revealed that the samples of PVA–Hyperici herba and PVA–Thymus vulgaris had the highest phenol contents, at 13.25 μgGAE/mL and 12.66 μgGAE/mL, respectively. Dynamic water vapor measurements were used in order to investigate the moisture sorption and desorption behavior of the developed electrospun materials. The antimicrobial behavior of these products was also evaluated. Disk diffusion assay studies with Escherichia coli, Staphylococcus aureus, and Methicillin-resistant Staphylococcus aureus were conducted on the developed nanofibers in order to quantify their phytotherapeutic potential.
Collapse
Affiliation(s)
- Diana Serbezeanu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.B.); (M.H.); (M.A.); (T.V.-B.)
- Correspondence:
| | - Alexandra Bargan
- “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.B.); (M.H.); (M.A.); (T.V.-B.)
| | - Mihaela Homocianu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.B.); (M.H.); (M.A.); (T.V.-B.)
| | - Magdalena Aflori
- “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.B.); (M.H.); (M.A.); (T.V.-B.)
| | - Cristina Mihaela Rîmbu
- Department of Public Health, Faculty of Veterinary Medicine “Ion Ionescu de la Brad”, University of Agricultural Sciences and Veterinary Medicine, 8, Mihail Sadoveanu Alley, 707027 Iasi, Romania;
| | | | - Tăchiță Vlad-Bubulac
- “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.B.); (M.H.); (M.A.); (T.V.-B.)
| |
Collapse
|
9
|
Gautam L, Warkar SG, Ahmad SI, Kant R, Jain M. A review on carboxylic acid cross‐linked polyvinyl alcohol: Properties and applications. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25849] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Leela Gautam
- Department of Applied Chemistry Delhi Technological University New Delhi India
- Department of Chemistry Zakir Husain Delhi College (University of Delhi) New Delhi India
| | - Sudhir G. Warkar
- Department of Applied Chemistry Delhi Technological University New Delhi India
| | - Syed Ishraque Ahmad
- Department of Chemistry Zakir Husain Delhi College (University of Delhi) New Delhi India
| | - Ravi Kant
- Department of Chemistry Zakir Husain Delhi College (University of Delhi) New Delhi India
| | - Manish Jain
- Department of Applied Chemistry Delhi Technological University New Delhi India
| |
Collapse
|
10
|
Self-healing Polymeric Hydrogels: Toward Multifunctional Soft Smart Materials. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2612-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Gao Y, Peng J, Zhou M, Yang Y, Wang X, Wang J, Cao Y, Wang W, Wu D. A multi-model, large range and anti-freezing sensor based on a multi-crosslinked poly(vinyl alcohol) hydrogel for human-motion monitoring. J Mater Chem B 2021; 8:11010-11020. [PMID: 33188676 DOI: 10.1039/d0tb02250k] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Conductive hydrogels are capturing intensive attention for versatile applications in flexible wearable devices on account of their unique combination of softness, stretchability, conductivity and biocompatibility. However, most of the hydrogel sensors can only serve as single-type sensors to detect strain or pressure, accompanied by a limited detection range. Moreover, the poor anti-freezing performance is also a serious problem to be addressed for their practical applications. Herein, a multi-model, large range and anti-freezing hydrogel sensor was constructed from a high-mechanical and ionic conductive multi-crosslinked poly(vinyl alcohol) (M-PVA) hydrogel, which was prepared via incorporating chain entanglement interaction and complexation between Fe3+ ions and hydroxyl groups into the microcrystalline network through immersion treatment in Fe2(SO4)3 solution. The three reversible and reconstructable crosslinks within the M-PVA hydrogel worked in tandem to achieve ultra-stretchability (1120%), supercompressibility (98%), high toughness, fast self-recoverability and excellent fatigue resistance. Meanwhile, the introduction of Fe3+ and SO42- ions endowed the M-PVA hydrogel with good ionic conductivity and remarkable anti-freezing properties (-50 °C), which benefited the M-PVA hydrogel to act as a freezing-tolerant dressing. The assembled multi-model hydrogel sensor can sensitively and stably detect large range elongation (∼900%), compression (∼70%), bend and pressure (up to 4.60 MPa) concurrently, as well as various human activities including speaking, finger bending and treading behavior. Notably, the hydrogel sensor was capable of maintaining excellent mechanical flexibility and sensitive sensing capacity at low temperature. The M-PVA hydrogel is a promising flexible sensing material for versatile applications in ionic skin, motion recognition and intelligent wearable devices.
Collapse
Affiliation(s)
- Yafei Gao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Junbo Peng
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Manhua Zhou
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yanyu Yang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianfeng Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yanxia Cao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Wanjie Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Decheng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
12
|
Dong C, Fan H, Tang F, Gao X, Feng K, Wang J, Jin Z. Mussel byssus cuticle-inspired ultrastiff and stretchable triple-crosslinked hydrogels. J Mater Chem B 2021; 9:373-380. [PMID: 33283808 DOI: 10.1039/d0tb01993c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Applications in the harsh environment require hydrogels with ultra-stiffness, toughness, and stretchability. However, it remains a challenge to increase the elastic modulus without sacrificing the maximum elongation of hydrogels, because of the trade-off between stiffness and extensibility. Inspired by the crosslinking hierarchy of mussel byssus cuticle, here, we report a strategy to fabricate an ultra-stiff, tough and stretchable triple-crosslinked (TC) hydrogel. The polymer is crosslinked by chemical crosslinker at first, subsequently by introducing a polyphenolic compound, tannic acid (TA), and metal ions. The hydrogen-bond-based network between the polymer and TA works as an extensible and energy-dissipative network, mimicking the matrix of the cuticle, while the higher crosslinked domains formed by the coordinate bonds between TA and metal ions contribute to the stiffness. The triple-crosslinked hydrogel exhibits two orders of magnitude increase in stiffness (E = 58 MPa), but without sacrificing the maximum elongation (ε = 850%), compared with those of metal-free hydrogels (E = 0.18 MPa, and ε = 860%). The combination of ultra-stiffness, toughness, and stretchability in hydrogels is successfully achieved through leveraging the hierarchically cross-linked network based on hydrogen bonding and coordination bonding. Moreover, utilizing the wide distribution of bonding strength of coordination interaction, the mechanical properties of triple-crosslinked hydrogels can be manipulated by using different kinds of catechol-metal coordination.
Collapse
Affiliation(s)
- Chenglong Dong
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| | - Hailong Fan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Feng Tang
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| | - Xiaobin Gao
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| | - Kai Feng
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| | - Jiahui Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| | - Zhaoxia Jin
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| |
Collapse
|
13
|
Liu D, Zhu L, Huang W, Yue K, Yang S. Polymer Complex Fiber for Linear Actuation with High Working Density and Stable Catch-State. ACS Macro Lett 2020; 9:1507-1513. [PMID: 35617077 DOI: 10.1021/acsmacrolett.0c00633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fiber-based linear actuators (FLAs) are a key module in microrobots and biomimetic devices. It has been a great challenge to develop linear actuators that can balance output stress and output strain and hence provide high working density. Herein, we report the preparation and performance of a FLA system made from commercially available materials and allowed mass production at relatively low cost. The FLAs can lift up or lay down objects more than 1000 times of its own weight during active contraction and expansion under environmental stimuli. The contraction ratio and output stress can reach 30% and 0.24 MPa, respectively, and the sustainable work density is about 80 J/kg, which is 10 times the typical value of human skeletal muscles. Especially, the FLAs show stable catch-state (lock-up state) with no creeping and no further energy consumption.
Collapse
Affiliation(s)
- Dezhong Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wentao Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kan Yue
- South China Advanced Institute for Soft Mater Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|