1
|
Tohamy HAS. Microwaved schiff base dialdehyde cellulose-chitosan hydrogels for sustained drug release with DFT calculations. BMC Chem 2025; 19:114. [PMID: 40317055 PMCID: PMC12049055 DOI: 10.1186/s13065-025-01469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 04/02/2025] [Indexed: 05/04/2025] Open
Abstract
Dialdehyde cellulose (DAC) prepared from sugarcane bagasse (SC) by an eco-friendly, fast and low-cost microwave method was used for loading and sustained release of 4-aminoacetophenone (4-AAP). DAC was reacted with chitosan (Ch) and 4-AAP via a Schiff base reaction. FTIR analysis confirmed successful Schiff base formation between DAC and Ch, evidenced by the disappearance of the DAC aldehyde peak at 1716 cm⁻1 and the appearance of the imine peak at 1631 cm⁻1, as well as strong hydrogen bonding with incorporated 4-AAP, indicated by a shift in the O-H stretch from 3336 cm⁻1 to 3330 cm⁻1.Swelling studies showed increased water absorption with higher 4-AAP content, with 4-AAP@DAC/Ch2 demonstrating pseudo-second-order kinetics and non-Fickian diffusion. The DFT calculations revealed that the 4-AAP@DAC/Ch hydrogel exhibited enhanced stability and reactivity. A significantly reduced HOMO-LUMO energy gap, coupled with negative Pi values, indicated strong interactions between DAC, chitosan, and 4-AAP. The high adsorption energy further supported the observed slow drug release, validating the experimental findings.
Collapse
Affiliation(s)
- Hebat-Allah S Tohamy
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth Str. Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
2
|
Clara da Silva Durigon M, Renata Caitano Visnheski B, Braz Júnior O, Christina Thomas J, Fogagnoli Simas F, Piovan L. Polyfunctionalized organoselenides: New synthetic approach from selenium-containing cyanohydrins and anti-melanoma activity. Bioorg Med Chem Lett 2024; 110:129860. [PMID: 38942128 DOI: 10.1016/j.bmcl.2024.129860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
A series of seleno-containing polyfunctionalized compounds was synthesized exploring cyanohydrin chemistry, including α-hydroxy esters, α-hydroxy acids, 1,2-diols, and 1,2-diacetates, with yields ranging from 26 up to 99 %. The cytotoxicity of all synthesized compounds was then evaluated using a non-tumor cell line (BALB/3T3 murine fibroblasts), and those deemed non-cytotoxic had their anti-melanoma activity evaluated using B16-F10 murine melanoma cells. These assays identified two compounds with selective cytotoxic activity against the tested melanoma cell line, showing a potential anti-melanoma application.
Collapse
|
3
|
Almustafa W, Schubert DW, Grishchuk S, Sebastian J, Grun G. Chemical Synthesis of Atactic Poly-3-hydroxybutyrate (a-P3HB) by Self-Polycondensation: Catalyst Screening and Characterization. Polymers (Basel) 2024; 16:1655. [PMID: 38932005 PMCID: PMC11207747 DOI: 10.3390/polym16121655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Poly-3-hydroxybutyrate (P3HB) is a biodegradable polyester produced mainly by bacterial fermentation in an isotactic configuration. Its high crystallinity (about 70%) and brittle behavior have limited the process window and the application of this polymer in different sectors. Atactic poly-3-hydroxybutyrate (a-P3HB) is an amorphous polymer that can be synthesized chemically and blended with the isotactic P3HB to reduce its crystallinity and improve its processability Ring-opening polymerization (ROP) is the most cited synthesis route for this polymer in the literature. In this work, a new synthesis route of a-P3HB by self-polycondensation of racemic ethyl 3-hydroxybutyrate will be demonstrated. Different catalysts were tested regarding their effectiveness, and the reaction parameters were optimized using titanium isopropoxide as the catalyst. The resulting polymers were compared by self-polycondensation for their properties with those of a-P3HB obtained by the ROP and characterized by Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC), and the double bond content (DBC) was determined by UV-VIS spectroscopy by using 3-butenoic acid as a standard. Additionally, a life cycle analysis (LCA) of the new method of synthesizing has been carried out to assess the environmental impact of a-P3HB.
Collapse
Affiliation(s)
- Wael Almustafa
- Department of Applied Logistics and Polymer Sciences, Kaiserslautern University of Applied Science, Schoenstr. 11, 67659 Kaiserslautern, Germany
| | - Dirk W. Schubert
- Institute of Polymer Materials, Department of Materials Science, Faculty of Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Martensstr. 7, 91058 Erlangen, Germany
| | - Sergiy Grishchuk
- Department of Applied Logistics and Polymer Sciences, Kaiserslautern University of Applied Science, Schoenstr. 11, 67659 Kaiserslautern, Germany
| | - Jörg Sebastian
- Department of Applied Logistics and Polymer Sciences, Kaiserslautern University of Applied Science, Schoenstr. 11, 67659 Kaiserslautern, Germany
| | - Gregor Grun
- Department of Applied Logistics and Polymer Sciences, Kaiserslautern University of Applied Science, Schoenstr. 11, 67659 Kaiserslautern, Germany
| |
Collapse
|
4
|
Azizi N, Eslami R, Goudarzi S, Younesi H, Zarrin H. A Review of Current Achievements and Recent Challenges in Bacterial Medium-Chain-Length Polyhydroxyalkanoates: Production and Potential Applications. Biomacromolecules 2024; 25:2679-2700. [PMID: 38656151 DOI: 10.1021/acs.biomac.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Using petroleum-derived plastics has contributed significantly to environmental issues, such as greenhouse gas emissions and the accumulation of plastic waste in ecosystems. Researchers have focused on developing ecofriendly polymers as alternatives to traditional plastics to address these concerns. This review provides a comprehensive overview of medium-chain-length polyhydroxyalkanoates (mcl-PHAs), biodegradable biopolymers produced by microorganisms that show promise in replacing conventional plastics. The review discusses the classification, properties, and potential substrates of less studied mcl-PHAs, highlighting their greater ductility and flexibility compared to poly(3-hydroxybutyrate), a well-known but brittle PHA. The authors summarize existing research to emphasize the potential applications of mcl-PHAs in biomedicine, packaging, biocomposites, water treatment, and energy. Future research should focus on improving production techniques, ensuring economic viability, and addressing challenges associated with industrial implementation. Investigating the biodegradability, stability, mechanical properties, durability, and cost-effectiveness of mcl-PHA-based products compared to petroleum-based counterparts is crucial. The future of mcl-PHAs looks promising, with continued research expected to optimize production techniques, enhance material properties, and expand applications. Interdisciplinary collaborations among microbiologists, engineers, chemists, and materials scientists will drive progress in this field. In conclusion, this review serves as a valuable resource to understand mcl-PHAs as sustainable alternatives to conventional plastics. However, further research is needed to optimize production methods, evaluate long-term ecological impacts, and assess the feasibility and viability in various industries.
Collapse
Affiliation(s)
- Nahid Azizi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, Ontario M5G 2C2, Canada
| | - Reza Eslami
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, Ontario M5G 2C2, Canada
| | - Shaghayegh Goudarzi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Habibollah Younesi
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University (TMU), Nour 64414-356, Iran
| | - Hadis Zarrin
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, Ontario M5G 2C2, Canada
| |
Collapse
|
5
|
Gabirondo E, Świderek K, Marin E, Maiz-Iginitz A, Larranaga A, Moliner V, Etxeberria A, Sardon H. A Single Amino Acid Able to Promote High-Temperature Ring-Opening Polymerization by Dual Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308956. [PMID: 38348541 DOI: 10.1002/advs.202308956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Indexed: 04/25/2024]
Abstract
Amino acids are indispensable compounds in the body, performing several biological processes that enable proper functioning. In this work, it is demonstrated that a single amino acid, taurine, is also able to promote the ring-opening polymerization (ROP) of several cyclic monomers under industrially relevant conditions. It is shown that the unique zwitterionic structure of taurine, where the negatively charged sulfonic acid group and the protonated amine group are separated by two methylene groups, not only provides high thermal stability but also leads to a dual activation mechanism, which is corroborated by quantum mechanical calculations. This unique mechanism allows for the synthesis of polylactide of up to 50 kDa in bulk at 180 °C with good end-group fidelity using a highly abundant catalyst. Furthermore, cytotoxicity tests confirm that PLLA synthesized with taurine is non-toxic. Moreover, it is demonstrated that the presence of taurine does not have any detrimental effect on the thermal stability of polylactide, and therefore polymers can be used directly without any post-polymerization purification. It is believed that the demonstration that a simple structure composed of a single amino acid can promote polymerization can bring a paradigm shift in the preparation of polymers.
Collapse
Affiliation(s)
- Elena Gabirondo
- POLYMAT, Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Manuel de Lardizabal 3 Pasealekua, Donostia, 20018, Spain
| | - Katarzyna Świderek
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, Castelló, 12071, Spain
| | - Edurne Marin
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao, 48013, Spain
| | - Ainhoa Maiz-Iginitz
- POLYMAT, Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Manuel de Lardizabal 3 Pasealekua, Donostia, 20018, Spain
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, San Sebastián, Spain
| | - Aitor Larranaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao, 48013, Spain
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, Castelló, 12071, Spain
| | - Agustin Etxeberria
- POLYMAT, Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Manuel de Lardizabal 3 Pasealekua, Donostia, 20018, Spain
| | - Haritz Sardon
- POLYMAT, Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Manuel de Lardizabal 3 Pasealekua, Donostia, 20018, Spain
| |
Collapse
|
6
|
Byeon H, Kim J, Lee MH, Jang HY. Ir(tri-N-heterocyclic carbene)-catalyzed upgrading of glycerol: C-C bond formation for the synthesis of α-hydroxy acids. Org Biomol Chem 2024; 22:1613-1618. [PMID: 38305776 DOI: 10.1039/d3ob02035e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Ir(triNHC) complexes catalyzed glycerol and alcohol dehydrogenative coupling, yielding diverse α-hydroxy acids. Unlike conventional conditions, Ir(triNHC) facilitated additional C-C bond formation after lactic acid production from glycerol, exhibiting high TOFs. This protocol successfully converted 1,2-propanediol and sorbitol into α-hydroxy acids, highlighting biomass-derived sources' potential as valuable platform chemicals.
Collapse
Affiliation(s)
- Heemin Byeon
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
| | - Jaeho Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
| | - Mi-Hyun Lee
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
| | - Hye-Young Jang
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
7
|
Biundo A, Stamm A, Gorgoglione R, Syrén PO, Curia S, Hauer B, Capriati V, Vitale P, Perna F, Agrimi G, Pisano I. REGIO- AND STEREOSELECTIVE BIOCATALYTIC HYDRATION OF FATTY ACIDS FROM WASTE COOKING OILS EN ROUTE TO HYDROXY FATTY ACIDS AND BIO-BASED POLYESTERS. Enzyme Microb Technol 2022; 163:110164. [DOI: 10.1016/j.enzmictec.2022.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
|
8
|
Wang Y, Liu J, Li C, Xiao Y, Wu S, Zhang B. Synthesis and characterization of poly(butylene terephthalate-co-glycolic acid) biodegradable copolyesters. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Nicolás P, Lassalle VL, Ferreira ML. Evaluation of biocatalytic pathways in the synthesis of polyesters: Towards a greener production of surgical sutures. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Paula Nicolás
- Catalysis group PLAPIQUI‐UNS‐CONICET Bahía Blanca Argentina
- Departamento de Química Universidad Nacional del Sur Bahía Blanca Argentina
| | - Verónica L. Lassalle
- Departamento de Química Universidad Nacional del Sur Bahía Blanca Argentina
- Applied Hybrid Nanomaterials group INQUISUR‐UNS‐CONICET Bahía Blanca Argentina
| | - María L. Ferreira
- Catalysis group PLAPIQUI‐UNS‐CONICET Bahía Blanca Argentina
- Departamento de Química Universidad Nacional del Sur Bahía Blanca Argentina
| |
Collapse
|
10
|
Innovative solutions and challenges to increase the use of Poly(3-hydroxybutyrate) in food packaging and disposables. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Lee MH, Byeon H, Jang HY. Synthesis of α-Hydroxy Acids via Dehydrogenative Cross-Coupling of a Sustainable C 2 Chemical (Ethylene Glycol) with Alcohols. J Org Chem 2022; 87:4631-4639. [PMID: 35294196 DOI: 10.1021/acs.joc.1c02981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ir(NHC) (NHC, N-heterocyclic carbene)-catalyzed dehydrogenative coupling of sustainable ethylene glycol and various bioalcohols can produce industrially valuable α-hydroxy acids (AHAs). This study is the first to report the sustainable synthesis of higher Cn AHAs, in addition to glycolic acid (C2 AHA) and lactic acid (C3 AHA). This catalytic system can be recycled to the seventh cycle while maintaining good yields. A reaction mechanism, including facile dehydrogenation of each alcohol and fast cross-coupling of dehydrogenated aldehydes forming products, was proposed based on 18O- and 2H-labeling experiments and electron spray ionization-mass spectrometry (ESI-MS) and NMR spectral analyses.
Collapse
Affiliation(s)
- Mi-Hyun Lee
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Heemin Byeon
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Hye-Young Jang
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| |
Collapse
|
12
|
Zhang W, Han L, Liu Z, Li Y, Shang J, Leng X, Li Y, Wei Z. Ring opening copolymerization of δ-valerolactone with 2-methyl-1,3-dioxane-4-one towards poly(3-hydroxypropionate-co-5-hydroxyvalerate) copolyesters. Polym Chem 2022. [DOI: 10.1039/d2py00215a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward strategy of ring-opening copolymerization (ROCOP) toward the synthetic copolyesters is gaining increasing interest. In present work, a novel series of poly(3-hydroxypropionate-co-5-hydroxyvalerate) P(3HP-co-5HV) copolyesters are obtained through ROCOP of...
Collapse
|
13
|
Esen C, Antonietti M, Kumru B. On the photopolymerization of mevalonic lactone methacrylate: exposing the potential of an overlooked monomer. Polym Chem 2022. [DOI: 10.1039/d1py01497h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This manuscript will exhibit the photopolymerization of mevalonic lactone methacrylate, an overlooked monomer, and how functional polymers with lactone pendant units can be synthesized.
Collapse
Affiliation(s)
- Cansu Esen
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Baris Kumru
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14424 Potsdam, Germany
| |
Collapse
|
14
|
Yu Y, Kim M, Lee GS, Lee HW, Kim JG, Kim BS. Organocatalyzed Synthesis and Degradation of Functionalized Poly(4-allyloxymethyl-β-propiolactone)s. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yeji Yu
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Minseong Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Gue Seon Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyo Won Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
Banfalvi G. Janus-Faced Molecules against Plant Pathogenic Fungi. Int J Mol Sci 2021; 22:12323. [PMID: 34830204 PMCID: PMC8623416 DOI: 10.3390/ijms222212323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
The high cytotoxicity of the secondary metabolites of mycotoxins is capable of killing microbes and tumour cells alike, similarly to the genotoxic effect characteristic of Janus-faced molecules. The "double-edged sword" effect of several cytotoxins is known, and these agents have, therefore, been utilized only reluctantly against fungal infections. In this review, consideration was given to (a) toxins that could be used against plant and human pathogens, (b) animal models that measure the effect of antifungal agents, (c) known antifungal agents that have been described and efficiently prevent the growth of fungal cells, and (d) the chemical interactions that are characteristic of antifungal agents. The utilization of apoptotic effects against tumour growth by agents that, at the same time, induce mutations may raise ethical issues. Nevertheless, it deserves consideration despite the mutagenic impact of Janus-faced molecules for those patients who suffer from plant pathogenic fungal infections and are older than their fertility age, in the same way that the short-term cytotoxicity of cancer treatment is favoured over the long-term mutagenic effect.
Collapse
Affiliation(s)
- Gaspar Banfalvi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 1 Egyetem Square, 4010 Debrecen, Hungary
| |
Collapse
|
16
|
Payne J, Jones MD. The Chemical Recycling of Polyesters for a Circular Plastics Economy: Challenges and Emerging Opportunities. CHEMSUSCHEM 2021; 14:4041-4070. [PMID: 33826253 PMCID: PMC8518041 DOI: 10.1002/cssc.202100400] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/01/2021] [Indexed: 05/05/2023]
Abstract
Whilst plastics have played an instrumental role in human development, growing environmental concerns have led to increasing public scrutiny and demands for outright bans. This has stimulated considerable research into renewable alternatives, and more recently, the development of alternative waste management strategies. Herein, the aim was to highlight recent developments in the catalytic chemical recycling of two commercial polyesters, namely poly(lactic acid) (PLA) and poly(ethylene terephthalate) (PET). The concept of chemical recycling is first introduced, and associated opportunities/challenges are discussed within the context of the governing depolymerisation thermodynamics. Chemical recycling methods for PLA and PET are then discussed, with a particular focus on upcycling and the use of metal-based catalysts. Finally, the attention shifts to the emergence of new materials with the potential to modernise the plastics economy. Emerging opportunities and challenges are discussed within the context of industrial feasibility.
Collapse
Affiliation(s)
- Jack Payne
- Centre for Sustainable and Circular TechnologiesUniversity of Bath Claverton DownBathBA2 7AYUK
| | - Matthew D. Jones
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUK
| |
Collapse
|
17
|
Payne JM, Kociok-Köhn G, Emanuelsson EAC, Jones MD. Zn(II)- and Mg(II)-Complexes of a Tridentate {ONN} Ligand: Application to Poly(lactic acid) Production and Chemical Upcycling of Polyesters. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01207] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jack M. Payne
- Centre for Sustainable and Circular Technologies, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Gabriele Kociok-Köhn
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Emma A. C. Emanuelsson
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Matthew D. Jones
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
18
|
Gabirondo E, Melendez-Rodriguez B, Arnal C, Lagaron JM, Martínez de Ilarduya A, Sardon H, Torres-Giner S. Organocatalyzed closed-loop chemical recycling of thermo-compressed films of poly(ethylene furanoate). Polym Chem 2021. [DOI: 10.1039/d0py01623c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Poly(ethylene furanoate) (PEF) films were first produced using thermo-compression. Thereafter, the chemical recyclability was demonstrated in the presence of a thermally stable organocatalyst followed by its repolymerization.
Collapse
Affiliation(s)
- Elena Gabirondo
- Department of Polymer Science and Technology
- Institute for Polymer Materials (POLYMAT)
- Faculty of Chemistry
- University of the Basque Country (UPV/EHU)
- 20018 Donostia
| | - Beatriz Melendez-Rodriguez
- Novel Materials and Nanotechnology Group
- Institute of Agrochemistry and Food Technology (IATA)
- Spanish National Research Council (CSIC)
- Valencia
- Spain
| | - Carmen Arnal
- Novel Materials and Nanotechnology Group
- Institute of Agrochemistry and Food Technology (IATA)
- Spanish National Research Council (CSIC)
- Valencia
- Spain
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group
- Institute of Agrochemistry and Food Technology (IATA)
- Spanish National Research Council (CSIC)
- Valencia
- Spain
| | - Antxon Martínez de Ilarduya
- Departament d'Enginyeria Química
- Universitat Politècnica de Catalunya
- Barcelona School of Industrial Engineering (ETSEIB)
- Barcelona
- Spain
| | - Haritz Sardon
- Department of Polymer Science and Technology
- Institute for Polymer Materials (POLYMAT)
- Faculty of Chemistry
- University of the Basque Country (UPV/EHU)
- 20018 Donostia
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group
- Institute of Agrochemistry and Food Technology (IATA)
- Spanish National Research Council (CSIC)
- Valencia
- Spain
| |
Collapse
|
19
|
Lin ST, Wang CC, Chang CJ, Nakamura Y, Lin KYA, Huang CF. Progress in the Preparation of Functional and (Bio)Degradable Polymers via Living Polymerizations. Int J Mol Sci 2020; 21:E9581. [PMID: 33339183 PMCID: PMC7765598 DOI: 10.3390/ijms21249581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 11/20/2022] Open
Abstract
This review presents the latest developments in (bio)degradable approaches and functional aliphatic polyesters and polycarbonates prepared by typical ring-opening polymerization (ROP) of lactones and trimethylene carbonates. It also considers several recent innovative synthetic methods including radical ring-opening polymerization (RROP), atom transfer radical polyaddition (ATRPA), and simultaneous chain- and step-growth radical polymerization (SCSRP) that produce aliphatic polyesters. With regard to (bio)degradable approaches, we have summarized several representative cleavable linkages that make it possible to obtain cleavable polymers. In the section on functional aliphatic polyesters, we explore the syntheses of specific functional lactones, which can be performed by ring-opening copolymerization of typical lactone/lactide monomers. Last but not the least, in the recent innovative methods section, three interesting synthetic methodologies, RROP, ATRPA, and SCSRP are discussed in detail with regard to their reaction mechanisms and polymer functionalities.
Collapse
Affiliation(s)
- Si-Ting Lin
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402-27, Taiwan;
| | - Chung-Chi Wang
- Division of Cardiovascular Surgery, Veterans General Hospital, Taichung 407-05, Taiwan;
| | - Chi-Jung Chang
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Seatwen District, Taichung 40724, Taiwan;
| | - Yasuyuki Nakamura
- Data-Driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science, Tsukuba 305-0047, Japan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402-27, Taiwan
| | - Chih-Feng Huang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402-27, Taiwan;
| |
Collapse
|
20
|
Wang G, Huang D, Ji J, Völker C, Wurm FR. Seawater-Degradable Polymers-Fighting the Marine Plastic Pollution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2001121. [PMID: 33437568 PMCID: PMC7788598 DOI: 10.1002/advs.202001121] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/31/2020] [Indexed: 05/06/2023]
Abstract
Polymers shape human life but they also have been identified as pollutants in the oceans due to their long lifetime and low degradability. Recently, various researchers have studied the impact of (micro)plastics on marine life, biodiversity, and potential toxicity. Even if the consequences are still heavily discussed, prevention of unnecessary waste is desired. Especially, newly designed polymers that degrade in seawater are discussed as potential alternatives to commodity polymers in certain applications. Biodegradable polymers that degrade in vivo (used for biomedical applications) or during composting often exhibit too slow degradation rates in seawater. To date, no comprehensive summary for the degradation performance of polymers in seawater has been reported, nor are the studies for seawater-degradation following uniform standards. This review summarizes concepts, mechanisms, and other factors affecting the degradation process in seawater of several biodegradable polymers or polymer blends. As most of such materials cannot degrade or degrade too slowly, strategies and innovative routes for the preparation of seawater-degradable polymers with rapid degradation in natural environments are reviewed. It is believed that this selection will help to further understand and drive the development of seawater-degradable polymers.
Collapse
Affiliation(s)
- Ge‐Xia Wang
- National Engineering Research Center of Engineering PlasticsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
| | - Dan Huang
- National Engineering Research Center of Engineering PlasticsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jun‐Hui Ji
- National Engineering Research Center of Engineering PlasticsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
| | - Carolin Völker
- ISOE – Institute for Social‐Ecological ResearchHamburger Allee 45Frankfurt60486Germany
| | - Frederik R. Wurm
- Max‐Planck‐Institut für PolymerforschungAckermannweg 10Mainz55128Germany
- Sustainable Polymer Chemistry GroupMESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit TwentePO Box 217Enschede7500 AEThe Netherlands
| |
Collapse
|