1
|
Janić N, Zhukouskaya H, Černoch P, Pánek J, Svoboda J, Hajná M, Řezníčková A, Tomšík E, Hrubý M. BAPTA-based potentiometric polymer sensor: towards sensing inflammations and infections. J Mater Chem B 2025; 13:4157-4165. [PMID: 40047457 DOI: 10.1039/d4tb02586e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Potentiometric ion sensors represent a significant subgroup of electrochemical sensors. In this study, we have developed a potentiometric sensor using an electrically conductive copolymer of 2,2'-bithiophene (BT) and 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) for the selective detection of Ca2+ ions in extracellular interstitial fluids. The integration of BAPTA with its highly selective calcium chelating properties into a polymer matrix via electrochemical polymerization results in a sensitive conductive polymer layer that effectively detects the presence of calcium ions. This sensor aims at the early detection of inflammation or infection around implants because local calcium concentration is strongly elevated in interstitial fluid in such pathologies. The potentiometric study proves the incorporation of BAPTA into the polymer matrix was successful and its potential decreased upon calcium binding demonstrating the Nernstian behavior with a slope of approximately 20 ± 0.3 mV per decade in the concentration range from 0.1 mM to 1 mM. Moreover, the selectivity coefficient of -0.4 was measured by SSM and calculated from the Nicolsky-Eisenmann equation, which indicates selectivity towards Ca2+ ions with respect to Mg2+ ions.
Collapse
Affiliation(s)
- Nikol Janić
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic.
- University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Hanna Zhukouskaya
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic.
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague 2, Czech Republic
| | - Peter Černoch
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic.
| | - Jiří Pánek
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic.
| | - Jan Svoboda
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic.
| | - Milena Hajná
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic.
| | - Alena Řezníčková
- University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Elena Tomšík
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic.
| | - Martin Hrubý
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 00 Prague 6, Czech Republic.
| |
Collapse
|
2
|
De Breuck J, Streiber M, Ringleb M, Schröder D, Herzog N, Schubert US, Zechel S, Traeger A, Leiske MN. Amino-Acid-Derived Anionic Polyacrylamides with Tailored Hydrophobicity-Physicochemical Properties and Cellular Interactions. ACS POLYMERS AU 2024; 4:222-234. [PMID: 38882030 PMCID: PMC11177303 DOI: 10.1021/acspolymersau.3c00048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 06/18/2024]
Abstract
Polyanions can internalize into cells via endocytosis without any cell disruption and are therefore interesting materials for biomedical applications. In this study, amino-acid-derived polyanions with different alkyl side-chains are synthesized via postpolymerization modification of poly(pentafluorophenyl acrylate), which is synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization, to obtain polyanions with tailored hydrophobicity and alkyl branching. The success of the reaction is verified by size-exclusion chromatography, NMR spectroscopy, and infrared spectroscopy. The hydrophobicity, surface charge, and pH dependence are investigated in detail by titrations, high-performance liquid chromatography, and partition coefficient measurements. Remarkably, the determined pK a-values for all synthesized polyanions are very similar to those of poly(acrylic acid) (pK a = 4.5), despite detectable differences in hydrophobicity. Interactions between amino-acid-derived polyanions with L929 fibroblasts reveal very slow cell association as well as accumulation of polymers in the cell membrane. Notably, the more hydrophobic amino-acid-derived polyanions show higher cell association. Our results emphasize the importance of macromolecular engineering toward ideal charge and hydrophobicity for polymer association with cell membranes and internalization. This study further highlights the potential of amino-acid-derived polymers and the diversity they provide for tailoring properties toward drug delivery applications.
Collapse
Affiliation(s)
- Jonas De Breuck
- Macromolecular Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Michael Streiber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Michael Ringleb
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Dennis Schröder
- Macromolecular Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bavarian Polymer Institute, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Natascha Herzog
- Macromolecular Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Stefan Zechel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Meike N Leiske
- Macromolecular Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bavarian Polymer Institute, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
3
|
Leiske MN, De Geest BG, Hoogenboom R. Impact of the polymer backbone chemistry on interactions of amino-acid-derived zwitterionic polymers with cells. Bioact Mater 2023; 24:524-534. [PMID: 36714331 PMCID: PMC9860433 DOI: 10.1016/j.bioactmat.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Zwitterionic polymers are known to interact with cells and have been shown to reveal cancer cell specificity. In this work, the importance of the chemistry of the polymer backbone for the cellular specificity of amino-acid-derived polyzwitterions is demonstrated. A series of glutamic acid (Glu)-based vinyl monomers (i.e., an acrylate, a methacrylate, an acrylamide, and a methacrylamide) were prepared and used for reversible addition-fragmentation chain-transfer (RAFT) polymerisation, yielding defined polymers with narrow size distribution (Ð < 1.3). All Glu-functionalised, zwitterionic polymers revealed high cytocompatibility; however, differences in cellular association and specificity were observed. In particular, the methacrylamide-derived polymers showed high association with both, breast cancer cells and non-cancerous dendritic cells and, consequently, lack specificity. In contrast, high specificity to only breast cancer cells was observed for polyacrylates, -methacrylates, and -acrylamides. Detailed analysis of the polymers revealed differences in hydrophobicity, zeta potential, and potential side chain hydrolysis, which are impacted by the polymer backbone and might be responsible for the altered the cell association of these polymers. It is shown that a slightly negative net charge is preferred over a neutral charge to retain cell specificity. This was also confirmed by association experiments in the presence of competitive amino acid transporter substrates. The affinity of slightly negatively charged Glu-derived polymers to the xCT Glu/cystine cell membrane antiporter was found to be higher than that of neutrally charged polymers. Our results emphasise the importance of the polymer backbone for the design of cell-specific polymers. This study further highlights the potential to tailor amino-acid-derived zwitterionic materials beyond their side chain functionality.
Collapse
Affiliation(s)
- Meike N. Leiske
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000, Ghent, Belgium
| | - Bruno G. De Geest
- Department of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000, Ghent, Belgium
| |
Collapse
|
4
|
Leiske MN, Mazrad ZAI, Zelcak A, Wahi K, Davis TP, McCarroll JA, Holst J, Kempe K. Zwitterionic Amino Acid-Derived Polyacrylates as Smart Materials Exhibiting Cellular Specificity and Therapeutic Activity. Biomacromolecules 2022; 23:2374-2387. [PMID: 35508075 DOI: 10.1021/acs.biomac.2c00143] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The synthesis of new amino acid-containing, cell-specific, therapeutically active polymers is presented. Amino acids served as starting material for the preparation of tailored polymers with different amino acids in the side chain. The reversible addition-fragmentation chain-transfer (RAFT) polymerization of acrylate monomers yielded polymers of narrow size distribution (Đ ≤ 1.3). In particular, glutamate (Glu)-functionalized, zwitterionic polymers revealed a high degree of cytocompatibility and cellular specificity, i.e., showing association to different cancer cell lines, but not with nontumor fibroblasts. Energy-dependent uptake mechanisms were confirmed by means of temperature-dependent cellular uptake experiments as well as localization of the polymers in cellular lysosomes determined by confocal laser scanning microscopy (CLSM). The amino acid receptor antagonist O-benzyl-l-serine (BzlSer) was chosen as an active ingredient for the design of therapeutic copolymers. RAFT copolymerization of Glu acrylate and BzlSer acrylate resulted in tailored macromolecules with distinct monomer ratios. The targeted, cytotoxic activity of copolymers was demonstrated by means of multiday in vitro cell viability assays. To this end, polymers with 25 mol % BzlSer content showed cytotoxicity against cancer cells, while leaving fibroblasts unaffected over a period of 3 days. Our results emphasize the importance of biologically derived materials to be included in synthetic polymers and the potential of zwitterionic, amino acid-derived materials for cellular targeting. Furthermore, it highlights that the fine balance between cellular specificity and unspecific cytotoxicity can be tailored by monomer ratios within a copolymer.
Collapse
Affiliation(s)
- Meike N Leiske
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Zihnil A I Mazrad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Aykut Zelcak
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kanu Wahi
- School of Medical Sciences and Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joshua A McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, NSW 2052, Australia.,Australian Centre for NanoMedicine, UNSW Sydney, Sydney, NSW 2052, Australia.,UNSW RNA Institute, Sydney, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Jeff Holst
- School of Medical Sciences and Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.,Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
5
|
Mazrad ZAI, Schelle B, Nicolazzo JA, Leiske MN, Kempe K. Nitrile-Functionalized Poly(2-oxazoline)s as a Versatile Platform for the Development of Polymer Therapeutics. Biomacromolecules 2021; 22:4618-4632. [PMID: 34647734 DOI: 10.1021/acs.biomac.1c00923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recent years, polymers bearing reactive groups have received significant interest for biomedical applications. Numerous functional polymer platforms have been introduced, which allow for the preparation of materials with tailored properties via post-polymerization modifications. However, because of their reactivity, many functional groups are not compatible with the initial polymerization. The nitrile group is a highly interesting and relatively inert functionality that has mainly received attention in radical polymerizations. In this Article, a nitrile-functionalized 2-oxazoline monomer (2-(4-nitrile-butyl)-2-oxazoline, BuNiOx) is introduced, and its compatibility with the cationic ring-opening polymerization is demonstrated. Subsequently, the versatility of nitrile-functionalized poly(2-oxazoline)s (POx) is presented. To this end, diverse (co)polymers are synthesized and characterized by nuclear resonance spectroscopy, size-exclusion chromatography, and mass spectrometry. Amphiphilic block copolymers are shown to efficiently encapsulate the hydrophobic drug curcumin (CUR) in aqueous solution, and the anti-inflammatory effect of the CUR-containing nanostructures is presented in BV-2 microglia. Furthermore, the availability of the BuNiOx repeating units for post-polymerization modifications with hydroxylamine to yield amidoxime (AO)-functionalized POx is demonstrated. These AO-containing POx were successfully applied for the complexation of Fe(III) in a quantitative manner. In addition, AO-functionalized POx were shown to release nitric oxide intracellularly in BV-2 microglia. Thus nitrile-functionalized POx represent a promising and robust platform for the design of polymer therapeutics for a wide range of applications.
Collapse
Affiliation(s)
- Zihnil A I Mazrad
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, Victoria 3052, Australia.,Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Baptiste Schelle
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, Victoria 3052, Australia.,Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Meike N Leiske
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, Victoria 3052, Australia.,Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, Victoria 3052, Australia.,Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
6
|
Leiske MN, Mahmoud AM, Warne NM, Goos JACM, Pascual S, Montembault V, Fontaine L, Davis TP, Whittaker MR, Kempe K. Poly(2-isopropenyl-2-oxazoline) – a structural analogue to poly(vinyl azlactone) with Orthogonal Reactivity. Polym Chem 2020. [DOI: 10.1039/d0py00861c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular copolymer platform based on two oxazole derivatives is presented. Post-polymerisation modifications revealed the potential to selectively modify the individual side groups, providing access to functional copolymer libraries in the future.
Collapse
|