1
|
Spalletta A, Joly N, Martin P. Latest Trends in Lipase-Catalyzed Synthesis of Ester Carbohydrate Surfactants: From Key Parameters to Opportunities and Future Development. Int J Mol Sci 2024; 25:3727. [PMID: 38612540 PMCID: PMC11012184 DOI: 10.3390/ijms25073727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Carbohydrate-based surfactants are amphiphilic compounds containing hydrophilic moieties linked to hydrophobic aglycones. More specifically, carbohydrate esters are biosourced and biocompatible surfactants derived from inexpensive renewable raw materials (sugars and fatty acids). Their unique properties allow them to be used in various areas, such as the cosmetic, food, and medicine industries. These multi-applications have created a worldwide market for biobased surfactants and consequently expectations for their production. Biobased surfactants can be obtained from various processes, such as chemical synthesis or microorganism culture and surfactant purification. In accordance with the need for more sustainable and greener processes, the synthesis of these molecules by enzymatic pathways is an opportunity. This work presents a state-of-the-art lipase action mode, with a focus on the active sites of these proteins, and then on four essential parameters for optimizing the reaction: type of lipase, reaction medium, temperature, and ratio of substrates. Finally, this review discusses the latest trends and recent developments, showing the unlimited potential for optimization of such enzymatic syntheses.
Collapse
Affiliation(s)
| | - Nicolas Joly
- Unité Transformations & Agroressources, ULR7519, Université d’Artois-UniLaSalle, F-62408 Béthune, France; (A.S.); (P.M.)
| | | |
Collapse
|
2
|
Ju Y, Liao H, Richardson JJ, Guo J, Caruso F. Nanostructured particles assembled from natural building blocks for advanced therapies. Chem Soc Rev 2022; 51:4287-4336. [PMID: 35471996 DOI: 10.1039/d1cs00343g] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Advanced treatments based on immune system manipulation, gene transcription and regulation, specific organ and cell targeting, and/or photon energy conversion have emerged as promising therapeutic strategies against a range of challenging diseases. Naturally derived macromolecules (e.g., proteins, lipids, polysaccharides, and polyphenols) have increasingly found use as fundamental building blocks for nanostructured particles as their advantageous properties, including biocompatibility, biodegradability, inherent bioactivity, and diverse chemical properties make them suitable for advanced therapeutic applications. This review provides a timely and comprehensive summary of the use of a broad range of natural building blocks in the rapidly developing field of advanced therapeutics with insights specific to nanostructured particles. We focus on an up-to-date overview of the assembly of nanostructured particles using natural building blocks and summarize their key scientific and preclinical milestones for advanced therapies, including adoptive cell therapy, immunotherapy, gene therapy, active targeted drug delivery, photoacoustic therapy and imaging, photothermal therapy, and combinational therapy. A cross-comparison of the advantages and disadvantages of different natural building blocks are highlighted to elucidate the key design principles for such bio-derived nanoparticles toward improving their performance and adoption. Current challenges and future research directions are also discussed, which will accelerate our understanding of designing, engineering, and applying nanostructured particles for advanced therapies.
Collapse
Affiliation(s)
- Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia. .,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Haotian Liao
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan 610065, China
| | - Joseph J Richardson
- Department of Materials Engineering, University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
3
|
Paulovičová E, Paulovičová L, Poláková M, Pánik M, Jantová S. In vitro evaluation of immunobiological activity of simple mannolipids. Toxicol In Vitro 2020; 70:105014. [PMID: 33049314 DOI: 10.1016/j.tiv.2020.105014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022]
Abstract
Immunomodulation, cytotoxicity and anti-cancer activity of selected amphiphilic non-ionic (thio)alkyl α-D-mannosides (with aglycone of C6-C12) were investigated in vitro in human cervix epitheloid carcinoma cell line HeLa, murine melanoma cancer cells B16, murine lymphocytic leukemia cell line L1210, murine fibroblast cell line NIH 3 T3 and murine macrophage cell line RAW 264.7. Toxicological studies revealed structure-dependent immunobiological effectivity based on a tight interaction with relevant cells. The results demonstrated diverse immunomodulation of macrophage cell-line RAW264.7 proliferation and production of Th1 and Th2 cytokines, and induction of pro-inflammatory interleukins IL-1α, TNFα, IL-6, IL-12 and IL-17 and anti-inflammatory IL-10 following (thio)alkyl α-D-mannosides 24 and 48 h exposure. Direct application of alkyl mannosides MOC10 and MOC12 and their thio analogues MSC10 and MSC12 in reconstructed human EpiDerm™ and MOC12 and MSC12 in EpiOcular™ model assays for dermal and ocular irritation together with quantification of human proinflammatory cytokines IL-1α, TNFα, IL-6 and IL-8 culture media release was used to ascertain toxicological safety.
Collapse
Affiliation(s)
- Ema Paulovičová
- Institute of Chemistry, Center for Glycomics, Dept. Immunochemistry of Glycoconjugates, Immunol and Cell Culture Laboratory, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Lucia Paulovičová
- Institute of Chemistry, Center for Glycomics, Dept. Immunochemistry of Glycoconjugates, Immunol and Cell Culture Laboratory, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Poláková
- Institute of Chemistry, Center for Glycomics, Dept.Glycochemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Pánik
- Institute of Management, of the Slovak University of Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Soňa Jantová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| |
Collapse
|