1
|
Wijker S, Dellemme D, Deng L, Fehér B, Voets IK, Surin M, Palmans ARA. Revealing the Folding of Single-Chain Polymeric Nanoparticles at the Atomistic Scale by Combining Computational Modeling and X-ray Scattering. ACS Macro Lett 2025; 14:428-433. [PMID: 40101120 PMCID: PMC12004929 DOI: 10.1021/acsmacrolett.5c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/20/2025]
Abstract
Predicting 3D structures of synthetic heterograft polymers in solution starting from a chemical structure remains a great challenge. Here, we get grip on the 3D structures formed by amphiphilic, random heterograft polymers in water depending on the nature of the hydrophilic graft. Atomistic MD simulations in explicit water on a μs time scale show that large Jeffamine-based grafts combined with randomly distributed hydrophobic grafts induce the formation of worm-like structures with local hydrophobic domains. Replacing Jeffamine by glucose affords core-shell ellipsoidal structures. The simulated small-angle X-ray scattering (SAXS) curves from the simulation results show excellent agreement with experimental SAXS results for the Jeffamine-based copolymers. For the glucose-based copolymers, the experimental SAXS results also indicated the presence of core-shell structures, albeit that (some) multichain aggregation was present. Our work highlights that global conformations of very large heterograft polymers (up to ∼30,000 atoms) can now be studied with (accelerated) MD simulations at the atomic scale in solvent (up to 2.5 million atoms). This joint approach constitutes a reliable tool to understand the folding and possible aggregation behavior of heterograft polymers in solution, paving the way toward predictive modeling of nanoparticle structures from a polymer's chemical structure.
Collapse
Affiliation(s)
- Stefan Wijker
- Laboratory
of Macromolecular and Organic Chemistry, Institute for Complex Molecular
Systems (ICMS), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - David Dellemme
- Laboratory
for Chemistry of Novel Materials, Center of Innovation and Research
in Materials and Polymers (CIRMAP), University
of Mons - UMONS, Place
du Parc 20, B-7000 Mons, Belgium
| | - Linlin Deng
- Laboratory
of Macromolecular and Organic Chemistry, Institute for Complex Molecular
Systems (ICMS), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Bence Fehér
- HUN-REN-SU
Nanobiophysics Research Group, HUN-REN-SU Biophysical Virology Research
Group, and Institute of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
- Laboratory
of Self-Organizing Soft Matter, Department of Chemical Engineering
and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ilja K. Voets
- Laboratory
of Self-Organizing Soft Matter, Department of Chemical Engineering
and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Mathieu Surin
- Laboratory
for Chemistry of Novel Materials, Center of Innovation and Research
in Materials and Polymers (CIRMAP), University
of Mons - UMONS, Place
du Parc 20, B-7000 Mons, Belgium
| | - Anja R. A. Palmans
- Laboratory
of Macromolecular and Organic Chemistry, Institute for Complex Molecular
Systems (ICMS), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
2
|
Wang V, Park SB, Lee SJ, Koo MB, Kim KT. High Molecular Weight Uniform Polymers Encoding Octal Sequences by Passerini Iterative Exponential Growth. J Am Chem Soc 2025; 147:780-788. [PMID: 39711156 DOI: 10.1021/jacs.4c13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Sequence-defined polymers composed of a large pool of chemically distinct monomers (SDPs) have been pursued to achieve the structural and functional precisions exhibited by biopolymers in nonbiological environments. In contrast to the incremental growth of SDPs by sequential addition of individual monomers, the iterative exponential growth (IEG) method allows the synthesis of high molecular-weight SDPs, but their sequences have been composed mostly of binary monomers. Consequently, achieving high molecular-weight SDPs built with a large pool of monomers remains a challenge. Here we report the Passerini iterative exponential growth (P-IEG) approach that enables efficient synthesis of 128-mer uniform poly(hydroxybutyrate) (PHB), possessing 127 γ-acylamino cyclohexyl side groups (27 kDa, Đ = 1) and a 31-mer SDP, encoding an octal sequence composed of eight chemically distinct repeating units. Taking advantage of the combinatorial character of the Passerini three-component reaction involving an aldehyde, a carboxylic acid, and an isocyanide to form an acyloxy amide linkage, we simultaneously achieved the exponential chain growth through the convergence of bifunctional building blocks and side-chain implementation by selecting appropriate isocyanides as a third component. The P-IEG approach enabled the synthetic encoding of complex information, an octal sequence equivalent to a 93-bit binary code, into a 31-mer SDP. Our proposed P-IEG method could contribute to the synthesis of synthetic macromolecules with absolutely defined sequences of functionalities. These polymers could be used for the development of functional materials with properties not achievable by conventional polymers, including polymers storing digital information at higher density.
Collapse
Affiliation(s)
- Valene Wang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Su Bin Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Soo Jeong Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Mo Beom Koo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Kyoung Taek Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
3
|
Grafskaia K, Qin Q, Li J, Magnin D, Dellemme D, Surin M, Glinel K, Jonas AM. Chain stretching in brushes favors sequence recognition for nucleobase-functionalized flexible precise oligomers. SOFT MATTER 2024; 20:8303-8311. [PMID: 39387435 DOI: 10.1039/d4sm00866a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Six different flexible stereocontrolled oligo(triazole-urethane)s substituted by precise sequences of nucleobases or analogs are synthesized. Molecular dynamics simulations indicate that the flexibility of the backbone leads to unspecific complexation of pairs of oligomers, irrespective of the complementarity of their sequences. This is ascribed to the existence of other interactions between pairs of oligomers, as well as to the spatial blurring of the sequence order encoded in the chemical structure of the chain due to its flexibility. The same conclusions are drawn when investigating the irreversible adsorption of different probe oligomers onto a layer of target oligomers grafted by click chemistry in a mushroom configuration on a silicon substrate. In contrast, when the target oligomers are grafted in denser brush configurations, irreversible adsorption becomes more specific, with it being twice as probable that probe chains of complementary sequence would be irreversibly-bound to the layer of target chains than those of non-complementary sequence. This is ascribed to lateral excluded volume interactions between chains in the brush, leading to partial chain stretching and increased spatial preservation of the information contained in the monomer sequence of the chains. At even higher grafting densities, however, the penetration of the probe chains in the brush becomes increasingly difficult, resulting in a loss of binding efficiency. Our work thus demonstrates the adverse role of chain flexibility in the specificity of complexation between nucleobase-functionalized oligomers and provides directions for an improvement of specificity by tuning the grafting density of target chains on a substrate.
Collapse
Affiliation(s)
- Kseniia Grafskaia
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Croix du Sud 1 L7.04.02, Louvain-la-Neuve, Belgium.
| | - Qian Qin
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Croix du Sud 1 L7.04.02, Louvain-la-Neuve, Belgium.
| | - Jie Li
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Croix du Sud 1 L7.04.02, Louvain-la-Neuve, Belgium.
| | - Delphine Magnin
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Croix du Sud 1 L7.04.02, Louvain-la-Neuve, Belgium.
| | - David Dellemme
- Laboratory for Chemistry of Novel Materials, Université de Mons - UMONS, Avenue Maistriau, 17, B-7000 Mons, Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Université de Mons - UMONS, Avenue Maistriau, 17, B-7000 Mons, Belgium
| | - Karine Glinel
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Croix du Sud 1 L7.04.02, Louvain-la-Neuve, Belgium.
| | - Alain M Jonas
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Croix du Sud 1 L7.04.02, Louvain-la-Neuve, Belgium.
| |
Collapse
|
4
|
Szatko M, Forysiak W, Kozub S, Andruniów T, Szweda R. Revealing the Effect of Stereocontrol on Intermolecular Interactions between Abiotic, Sequence-Defined Polyurethanes and a Ligand. ACS Biomater Sci Eng 2024; 10:3727-3738. [PMID: 38804015 PMCID: PMC11167595 DOI: 10.1021/acsbiomaterials.4c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
The development of precision polymer synthesis has facilitated access to a diverse library of abiotic structures wherein chiral monomers are positioned at specific locations within macromolecular chains. These structures are anticipated to exhibit folding characteristics similar to those of biotic macromolecules and possess comparable functionalities. However, the extensive sequence space and numerous variables make selecting a sequence with the desired function challenging. Therefore, revealing sequence-function dependencies and developing practical tools are necessary to analyze their conformations and molecular interactions. In this study, we investigate the effect of stereochemistry, which dictates the spatial location of backbone and pendant groups, on the interaction between sequence-defined oligourethanes and bisphenol A ligands. Various methods are explored to analyze the receptor-like properties of model oligomers and the ligand. The accuracy of molecular dynamics simulations and experimental techniques is assessed to uncover the impact of discrete changes in stereochemical arrangements on the structures of the resulting complexes and their binding strengths. Detailed computational investigations providing atomistic details show that the formed complexes demonstrate significant structural diversity depending on the sequence of stereocenters, thus affecting the oligomer-ligand binding strength. Among the tested techniques, the fluorescence spectroscopy data, fitted to the Stern-Volmer equation, are consistently aligned with the calculations, thus validating the developed simulation methodology. The developed methodology opens a way to engineer the structure of sequence-defined oligomers with receptor-like functionality to explore their practical applications, e.g., as sensory materials.
Collapse
Affiliation(s)
- Maksymilian Szatko
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland
- Department
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Weronika Forysiak
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Sara Kozub
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland
| | - Tadeusz Andruniów
- Department
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Roza Szweda
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland
- Center
for Advanced Technologies, Adam Mickiewicz
University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| |
Collapse
|
5
|
Qin Q, Li J, Dellemme D, Fossépré M, Barozzino-Consiglio G, Nekkaa I, Boborodea A, Fernandes AE, Glinel K, Surin M, Jonas AM. Dynamic self-assembly of supramolecular catalysts from precision macromolecules. Chem Sci 2023; 14:9283-9292. [PMID: 37712032 PMCID: PMC10498719 DOI: 10.1039/d3sc03133k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
We show the emergence of strong catalytic activity at low concentrations in dynamic libraries of complementary sequence-defined oligomeric chains comprising pendant functional catalytic groups and terminal recognition units. In solution, the dynamic constitutional library created from pairs of such complementary oligomers comprises free oligomers, self-assembled di(oligomeric) macrocycles, and a virtually infinite collection of linear poly(oligomeric) chains. We demonstrate, on an exemplary catalytic system requiring the cooperation of no less than five chemical groups, that supramolecular di(oligomeric) macrocycles exhibit a catalytic turnover frequency ca. 20 times larger than the whole collection of linear poly(oligomers) and free chains. Molecular dynamics simulations and network analysis indicate that self-assembled supramolecular di(oligomeric) macrocycles are stabilized by different interactions, among which chain end pairing. We mathematically model the catalytic properties of such complex dynamic libraries with a small set of physically relevant parameters, which provides guidelines for the synthesis of oligomers capable to self-assemble into functionally-active supramolecular macrocycles over a larger range of concentrations.
Collapse
Affiliation(s)
- Qian Qin
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain Croix du Sud 1 L7.04.02, Louvain-la-Neuve Belgium
| | - Jie Li
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain Croix du Sud 1 L7.04.02, Louvain-la-Neuve Belgium
| | - David Dellemme
- Laboratory for Chemistry of Novel Materials, Université de Mons - UMONS Avenue Maistriau, 17 B-7000 Mons Belgium
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials, Université de Mons - UMONS Avenue Maistriau, 17 B-7000 Mons Belgium
| | - Gabriella Barozzino-Consiglio
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain Croix du Sud 1 L7.04.02, Louvain-la-Neuve Belgium
| | - Imane Nekkaa
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain Croix du Sud 1 L7.04.02, Louvain-la-Neuve Belgium
| | | | - Antony E Fernandes
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain Croix du Sud 1 L7.04.02, Louvain-la-Neuve Belgium
- Certech rue Jules Bordet 45 7180 Seneffe Belgium
| | - Karine Glinel
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain Croix du Sud 1 L7.04.02, Louvain-la-Neuve Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Université de Mons - UMONS Avenue Maistriau, 17 B-7000 Mons Belgium
| | - Alain M Jonas
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain Croix du Sud 1 L7.04.02, Louvain-la-Neuve Belgium
| |
Collapse
|
6
|
Kamon Y, Miura J, Okuno K, Yamasaki S, Nakahata M, Hashidzume A. Synthesis of Stereoregular Uniform Oligomers Possessing a Dense 1,2,3-Triazole Backbone. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuri Kamon
- Administrative Department, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka560-0043, Japan
| | - Junji Miura
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka560-0043, Japan
| | - Koji Okuno
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka560-0043, Japan
| | - Shota Yamasaki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka560-0043, Japan
| | - Masaki Nakahata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka560-0043, Japan
| | - Akihito Hashidzume
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka560-0043, Japan
| |
Collapse
|
7
|
Cwynar P, Pasikowski P, Szweda R. One-pot approach for multi-step, iterative synthesis of sequence-defined oligocarbamates. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Kardas S, Fossépré M, Lemaur V, Fernandes AE, Glinel K, Jonas AM, Surin M. Revealing the Organization of Catalytic Sequence-Defined Oligomers via Combined Molecular Dynamics Simulations and Network Analysis. J Chem Inf Model 2022; 62:2761-2770. [PMID: 35608867 DOI: 10.1021/acs.jcim.2c00101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Similar to biological macromolecules such as DNA and proteins, the precise control over the monomer position in sequence-defined polymers is of paramount importance for tuning their structures and properties toward achieving specific functions. Here, we apply molecular network analysis on three-dimensional structures issued from molecular dynamics simulations to decipher how the chain organization of trifunctional catalytic oligomers is influenced by the oligomer sequence and the length of oligo(ethylene oxide) spacers. Our findings demonstrate that the tuning of their primary structures is crucial for favoring cooperative interactions between the catalytic units and thus higher catalytic activities. This combined approach can assist in establishing structure-property relationships, leading to a more rational design of sequence-defined catalytic oligomers via computational chemistry.
Collapse
Affiliation(s)
- Sinan Kardas
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, University of Mons-UMONS, Place du Parc 20, Mons B-7000, Belgium.,Institute for Complex Molecular Systems, Eindhoven University of Technology-TU/e, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, University of Mons-UMONS, Place du Parc 20, Mons B-7000, Belgium
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, University of Mons-UMONS, Place du Parc 20, Mons B-7000, Belgium
| | - Antony E Fernandes
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université catholique de Louvain-UCLouvain, Louvain-la-Neuve B-1348, Belgium.,Certech, Rue Jules Bordet 45, Zone Industrielle C, Seneffe B-7180, Belgium
| | - Karine Glinel
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université catholique de Louvain-UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | - Alain M Jonas
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université catholique de Louvain-UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, University of Mons-UMONS, Place du Parc 20, Mons B-7000, Belgium
| |
Collapse
|
9
|
Li J, Qin Q, Kardas S, Fossépré M, Surin M, Fernandes AE, Glinel K, Jonas AM. Sequence Rules the Functional Connections and Efficiency of Catalytic Precision Oligomers. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jie Li
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Qian Qin
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Sinan Kardas
- Laboratory for Chemistry of Novel Materials, Centre of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons - UMONS, 20 Place du Parc, 7000 Mons, Belgium
- Institute for Complex Molecular Systems, Eindhoven University of Technology - TU/e, P.O.
Box 513, Eindhoven 5600 MB, The Netherlands
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials, Centre of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons - UMONS, 20 Place du Parc, 7000 Mons, Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Centre of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons - UMONS, 20 Place du Parc, 7000 Mons, Belgium
| | | | - Karine Glinel
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Alain M. Jonas
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
10
|
Forysiak W, Kozub S, John L, Szweda R. Discrete oligourethanes of sequence-regulated properties – impact of stereocontrol. Polym Chem 2022. [DOI: 10.1039/d2py00299j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Properties and functions of natural biopolymers such as proteins are strongly dependent on the sequence of amino acid monomers. The regulation of the properties of synthetic polymers by controlling monomer...
Collapse
|
11
|
Wang X, Zhang X, Sun Y, Ding S. Stereocontrolled Sequence-Defined Oligotriazoles through Metal-Free Elongation Strategies. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xiaojun Wang
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xueyan Zhang
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yunxin Sun
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengtao Ding
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
12
|
Zhang X, Gou F, Wang X, Wang Y, Ding S. Easily Functionalized and Readable Sequence-Defined Polytriazoles. ACS Macro Lett 2021; 10:551-557. [PMID: 35570766 DOI: 10.1021/acsmacrolett.1c00145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Developing sequence-defined skeletons that could be conveniently characterized and functionalized with diverse side groups is attractive but challenging. Here we report one novel sequence-defined polytriazole structure bearing side groups at its triazole rings. Its construction was facilely accessed by the iterative employments of azidation and iridium-catalyzed cycloaddition of azide with internal 1-thioalkyne (IrAAC) in solution phase. The easy preparation of 1-thioalkyne monomers and the excellent tolerance of IrAAC enable the introduction of diverse functional side chains to this architecture. The obtained sequence was effectively characterized by tandem mass spectrometry owing to the efficient fractures of both of the Csp3-S and Csp3-N bonds in its backbone, indicating its potential utilization in high-capacity digital polymer developments. Further successful application of this structure in building monodisperse macromolecules exhibiting aggregation-induced emission (AIE) characteristics demonstrates its expected application in functional material fabrications.
Collapse
Affiliation(s)
- Xueyan Zhang
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fuqi Gou
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaojun Wang
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yong Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Shengtao Ding
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Aksakal R, Mertens C, Soete M, Badi N, Du Prez F. Applications of Discrete Synthetic Macromolecules in Life and Materials Science: Recent and Future Trends. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004038. [PMID: 33747749 PMCID: PMC7967060 DOI: 10.1002/advs.202004038] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/22/2020] [Indexed: 05/19/2023]
Abstract
In the last decade, the field of sequence-defined polymers and related ultraprecise, monodisperse synthetic macromolecules has grown exponentially. In the early stage, mainly articles or reviews dedicated to the development of synthetic routes toward their preparation have been published. Nowadays, those synthetic methodologies, combined with the elucidation of the structure-property relationships, allow envisioning many promising applications. Consequently, in the past 3 years, application-oriented papers based on discrete synthetic macromolecules emerged. Hence, material science applications such as macromolecular data storage and encryption, self-assembly of discrete structures and foldamers have been the object of many fascinating studies. Moreover, in the area of life sciences, such structures have also been the focus of numerous research studies. Here, it is aimed to highlight these recent applications and to give the reader a critical overview of the future trends in this area of research.
Collapse
Affiliation(s)
- Resat Aksakal
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| | - Chiel Mertens
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| | - Matthieu Soete
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| | - Nezha Badi
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| | - Filip Du Prez
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| |
Collapse
|
14
|
Genabeek B, Lamers BAG, Hawker CJ, Meijer EW, Gutekunst WR, Schmidt BVKJ. Properties and applications of precision oligomer materials; where organic and polymer chemistry join forces. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200862] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bas Genabeek
- Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
| | - Brigitte A. G. Lamers
- Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
| | - Craig J. Hawker
- Materials Research Laboratory University of California Santa Barbara California USA
- Materials Department University of California Santa Barbara California USA
| | - E. W. Meijer
- Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
| | - Will R. Gutekunst
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia USA
| | - Bernhard V. K. J. Schmidt
- Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces Potsdam Germany
- School of Chemisty University of Glasgow Glasgow UK
| |
Collapse
|
15
|
Wang X, Zhang X, Wang Y, Ding S. IrAAC-based construction of dual sequence-defined polytriazoles. Polym Chem 2021. [DOI: 10.1039/d1py00718a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
One novel dual sequence-defined polytriazole structure was facilely achieved through an IrAAC-based iterative sequential growth strategy.
Collapse
Affiliation(s)
- Xiaojun Wang
- State Key Laboratory of Organic–Inorganic Composites
- College of Chemical Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Xueyan Zhang
- State Key Laboratory of Organic–Inorganic Composites
- College of Chemical Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Yong Wang
- BGI-Shenzhen
- Beishan Industrial Zone
- Shenzhen 518083
- China
| | - Shengtao Ding
- State Key Laboratory of Organic–Inorganic Composites
- College of Chemical Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| |
Collapse
|
16
|
Li C, Han L, Chen X, Bao X, Sun Q, Ma H, Li Y. Regulation of tectonic sequences in chain-folding-directed monodisperse isomeric oligomers precisely tailored by Ugi-hydrosilylation orthogonal cycles. Polym Chem 2021. [DOI: 10.1039/d1py00416f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Monodisperse discrete oligomers with a tailored sequence of linkages within their backbones, which has been defined as a tectonic sequence, were precisely constructed through Ugi-4CRs coupled to hydrosilylation orthogonal cycles.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Li Han
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Xiping Chen
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Xinyu Bao
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Qi Sun
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Yang Li
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|
17
|
Abstract
This review offers a summary on the advances in the construction of 1,2,3-triazole-based sequence-defined oligomers and polymers through MAAC-based ISG or IEG strategies.
Collapse
Affiliation(s)
- Xiaojun Wang
- State Key Laboratory of Organic-Inorganic Composites
- College of Chemical Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xueyan Zhang
- State Key Laboratory of Organic-Inorganic Composites
- College of Chemical Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Shengtao Ding
- State Key Laboratory of Organic-Inorganic Composites
- College of Chemical Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
18
|
Reith MA, Kardas S, Mertens C, Fossépré M, Surin M, Steinkoenig J, Du Prez FE. Using nickel to fold discrete synthetic macromolecules into single-chain nanoparticles. Polym Chem 2021. [DOI: 10.1039/d1py00229e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sequence-defined macromolecules were prepared with a thiolactone-based platform whereby ligand functionalities were introduced along the backbone enabling a nickel induced formation of single-chain nanoparticles.
Collapse
Affiliation(s)
- Melissa A. Reith
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Sinan Kardas
- Laboratory of Chemistry of Novel Materials, Center of Innovation in Materials and Polymers (CIRMAP), University of Mons - UMONS, Place du Parc 20, Mons B-7000, Belgium
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Chiel Mertens
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Mathieu Fossépré
- Laboratory of Chemistry of Novel Materials, Center of Innovation in Materials and Polymers (CIRMAP), University of Mons - UMONS, Place du Parc 20, Mons B-7000, Belgium
| | - Mathieu Surin
- Laboratory of Chemistry of Novel Materials, Center of Innovation in Materials and Polymers (CIRMAP), University of Mons - UMONS, Place du Parc 20, Mons B-7000, Belgium
| | - Jan Steinkoenig
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Filip E. Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| |
Collapse
|
19
|
Ślęczkowski ML, Segers I, Liu Y, Palmans ARA. Sequence-defined l-glutamamide oligomers with pendant supramolecular motifs via iterative synthesis and orthogonal post-functionalization. Polym Chem 2020. [DOI: 10.1039/d0py01157f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the great challenges in polymer chemistry is to achieve discrete and sequence-defined synthetic polymers that fold in defined conformations and form well-defined three-dimensional structured particles.
Collapse
Affiliation(s)
- Marcin L. Ślęczkowski
- Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
- Laboratory of Macromolecular and Organic Chemistry
| | - Ian Segers
- Laboratory of Macromolecular and Organic Chemistry
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Yiliu Liu
- Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
- Laboratory of Macromolecular and Organic Chemistry
| | - Anja R. A. Palmans
- Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
- Laboratory of Macromolecular and Organic Chemistry
| |
Collapse
|