1
|
Odnoroh M, Desmoulin F, Coutelier O, Pestourie C, Mingotaud C, Destarac M, Marty JD. Design of colloidal vectors for active targeting via complexation of biotinylated copolymers with gadolinium ions. NANOSCALE 2025. [PMID: 40421795 DOI: 10.1039/d5nr00986c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
This study presents the design of biotin-functionalized hybrid polyionic complexes (HPICs) using RAFT polymers for MRI applications. The synthesized colloidal vectors, complexed with gadolinium ions, demonstrate high stability, relaxivity, and biotin accessibility for active targeting. Preliminary in vivo studies confirm their potential for improved MRI contrast and pharmacokinetic tracking.
Collapse
Affiliation(s)
- Maksym Odnoroh
- Université de Toulouse, CNRS UMR 5623, Laboratoire Softmat, Toulouse, France.
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), UMR 1214, Inserm, University of Toulouse - Paul Sabatier, Toulouse, France
- CREFRE-Anexplo, University of Toulouse, Inserm, UT3, ENVT, Toulouse, France
| | - Olivier Coutelier
- Université de Toulouse, CNRS UMR 5623, Laboratoire Softmat, Toulouse, France.
| | - Carine Pestourie
- CREFRE-Anexplo, University of Toulouse, Inserm, UT3, ENVT, Toulouse, France
| | | | - Mathias Destarac
- Université de Toulouse, CNRS UMR 5623, Laboratoire Softmat, Toulouse, France.
| | - Jean-Daniel Marty
- Université de Toulouse, CNRS UMR 5623, Laboratoire Softmat, Toulouse, France.
| |
Collapse
|
2
|
Sivokhin A, Orekhov D, Kazantsev O, Otopkova K, Sivokhina O, Chuzhaykin I, Spitsina E, Barinov D. Anionic Oligo(ethylene glycol)-Based Molecular Brushes: Thermo- and pH-Responsive Properties. Polymers (Basel) 2024; 16:3493. [PMID: 39771345 PMCID: PMC11728562 DOI: 10.3390/polym16243493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Anionic thermo- and pH-responsive copolymers were synthesized by photoiniferter reversible addition-fragmentation chain transfer polymerization (PI-RAFT). The thermo-responsive properties were provided by oligo(ethylene glycol)-based macromonomer units containing hydrophilic and hydrophobic moieties. The pH-responsive properties were enabled by the addition of 5-20 mol% of strong (2-acrylamido-2-methylpropanesulfonic) and weak (methacrylic) acids. Upon initiation by visible light at 470 nm and in the absence of radical initiators, yields from the ternary copolymers reached 94% in 2.5 h when the process was carried out in continuous flow mode using 4-cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid as a light-sensitive RAFT agent. The polymers were characterized using size exclusion chromatography, IR and NMR spectroscopy, and differential scanning calorimetry. The copolymers featured a sufficiently high molecular weight (93-146 kDa) consistent with theoretical values and satisfactory dispersities in the range of 1.18-1.45. The pH-responsive properties were studied in deionized water, saline, and buffer solutions. Dramatic differences in LCST behavior were observed in strong and weak acid-based polyelectrolytes. The introduction of sulfonic acid units, even in very small amounts, completely suppressed the LCST transition in deionized water while maintaining it in the saline and buffer solutions, with a negligible LCST dependence on the pH. In contrast, the incorporation of weak methacrylic acid demonstrated a pronounced pH dependence. The peculiarities of micelle formation in aqueous solutions were investigated and critical micelle concentrations and their ability to retain pyrene, a hydrophobic drug model, were determined. It was observed that anionic molecular brushes formed small micelles with aggregation numbers of 1-2 at concentrations in the order of 10-4 mg/mL. These micelles have a high ability to entrap pyrene, which makes them a promising tool for targeted drug delivery.
Collapse
Affiliation(s)
- Alexey Sivokhin
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| | - Dmitry Orekhov
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| | - Oleg Kazantsev
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| | - Ksenia Otopkova
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| | - Olga Sivokhina
- V.A. Kargin Research Institute of Chemistry and Technology of Polymers with Pilot Plant, 606000 Dzerzhinsk, Nizhegorodskaya Oblast, Russia
| | - Ilya Chuzhaykin
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| | - Ekaterina Spitsina
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| | - Dmitry Barinov
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia
| |
Collapse
|
3
|
Sivokhin A, Orekhov D, Kazantsev O, Otopkova K, Sivokhina O, Chuzhaykin I, Ovchinnikov A, Zamyshlyayeva O, Pavlova I, Ozhogina O, Chubenko M. Amide-Containing Bottlebrushes via Continuous-Flow Photoiniferter Reversible Addition-Fragmentation Chain Transfer Polymerization: Micellization Behavior. Polymers (Basel) 2023; 16:134. [PMID: 38201799 PMCID: PMC10780833 DOI: 10.3390/polym16010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Herein, a series of ternary amphiphilic amide-containing bottlebrushes were synthesized by photoiniferter (PI-RAFT) polymerization of macromonomers in continuous-flow mode using trithiocarbonate as a chain transfer agent. Visible light-mediated polymerization of macromonomers under mild conditions enabled the preparation of thermoresponsive copolymers with low dispersity and high yields in a very short time, which is not typical for the classical reversible addition-fragmentation chain transfer process. Methoxy oligo(ethylene glycol) methacrylate and alkoxy(C12-C14) oligo(ethylene glycol) methacrylate were used as the basic monomers providing amphiphilic and thermoresponsive properties. The study investigated how modifying comonomers, acrylamide (AAm), methacrylamide (MAAm), and N-methylacrylamide (-MeAAm) affect the features of bottlebrush micelle formation, their critical micelle concentration, and loading capacity for pyrene, a hydrophobic drug model. The results showed that the process is scalable and can produce tens of grams of pure copolymer per day. The unmodified copolymer formed unimolecular micelles at temperatures below the LCST in aqueous solutions, as revealed by DLS and SLS data. The incorporation of AAm, MAAm, and N-MeAAm units resulted in an increase in micelle aggregation numbers. The resulting bottlebrushes formed uni- or bimolecular micelles at extremely low concentrations. These micelles possess a high capacity for loading pyrene, making them a promising choice for targeted drug delivery.
Collapse
Affiliation(s)
- Alexey Sivokhin
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Dmitry Orekhov
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Oleg Kazantsev
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Ksenia Otopkova
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Olga Sivokhina
- V.A. Kargin Research Institute of Chemistry and Technology of Polymers with Pilot Plant, 606000 Dzerzhinsk, Nizhegorodskaya obl., Russia
| | - Ilya Chuzhaykin
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Alexey Ovchinnikov
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Olga Zamyshlyayeva
- Department of High Molecular Compounds and Colloidal Chemistry, Faculty of Chemistry, Lobachevsky State University, Gagarina pr. 23, 603950 Nizhny Novgorod, Russia
| | - Irina Pavlova
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Olga Ozhogina
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| | - Maria Chubenko
- Research Laboratory “New Polymeric Materials”, Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Russia
| |
Collapse
|
4
|
Synthesis of a dual UCST-type thermosensitive and acid-degradable nanogel based on poly(N-acryloyl glycinamide) and a ketal-containing crosslinker. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
A Photoinduced Dual‐Wavelength Approach for 3D Printing and Self‐Healing of Thermosetting Materials. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Zhang J, Duan J, Chen D, Ma Y, Yang W. Direct Photolysis RAFT Polymerization of (Metha)acrylate with 2‐Cyano‐2‐propyldodecyl Trithiocarbonate as Mediator. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianxiong Zhang
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Junjin Duan
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Dong Chen
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers Beijing University of Chemical Technology Beijing 100029 China
| | - Yuhong Ma
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers Beijing University of Chemical Technology Beijing 100029 China
| | - Wantai Yang
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
7
|
Padmakumar AK, Santha Kumar ARS, Allison-Logan S, Ashokkumar M, Singha NK, Qiao GG. High chain-end fidelity in sono-RAFT polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00982j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study presents the preparation of well-defined multi-block copolymers and understanding of the chain-end fidelity of polymers prepared via sono-RAFT technique.
Collapse
Affiliation(s)
- Amrish Kumar Padmakumar
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia
| | - Arunjunai R. S. Santha Kumar
- School of Chemistry, The University of Melbourne, Parkville 3010, Australia
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India
| | - Stephanie Allison-Logan
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia
| | | | - Nikhil K. Singha
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India
| | - Greg G. Qiao
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
8
|
Sivokhin A, Orekhov D, Kazantsev O, Sivokhina O, Orekhov S, Kamorin D, Otopkova K, Smirnov M, Karpov R. Random and Diblock Thermoresponsive Oligo(ethylene glycol)-Based Copolymers Synthesized via Photo-Induced RAFT Polymerization. Polymers (Basel) 2021; 14:137. [PMID: 35012157 PMCID: PMC8747269 DOI: 10.3390/polym14010137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 01/11/2023] Open
Abstract
Amphiphilic random and diblock thermoresponsive oligo(ethylene glycol)-based (co)polymers were synthesized via photoiniferter polymerization under visible light using trithiocarbonate as a chain transfer agent. The effect of solvent, light intensity and wavelength on the rate of the process was investigated. It was shown that blue and green LED light could initiate RAFT polymerization of macromonomers without an exogenous initiator at room temperature, giving bottlebrush polymers with low dispersity at sufficiently high conversions achieved in 1-2 h. The pseudo-living mechanism of polymerization and high chain-end fidelity were confirmed by successful chain extension. Thermoresponsive properties of the copolymers in aqueous solutions were studied via turbidimetry and laser light scattering. Random copolymers of methoxy- and alkoxy oligo(ethylene glycol) methacrylates of a specified length formed unimolecular micelles in water with a hydrophobic core consisting of a polymer backbone and alkyl groups and a hydrophilic oligo(ethylene glycol) shell. In contrast, the diblock copolymer formed huge multimolecular micelles.
Collapse
Affiliation(s)
- Alexey Sivokhin
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| | - Dmitry Orekhov
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| | - Oleg Kazantsev
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| | - Olga Sivokhina
- V.A. Kargin Research Institute of Chemistry and Technology of Polymers with Pilot Plant, 606000 Dzerzhinsk, Russia;
| | - Sergey Orekhov
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| | - Denis Kamorin
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
- Chromatography Laboratory, Department of Production Control and Chromatography Methods, Lobachevsky State University of Nizhni Novgorod, Dzerzhinsk Branch, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia
| | - Ksenia Otopkova
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| | - Michael Smirnov
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| | - Rostislav Karpov
- Laboratory of Acrylic Monomers and Polymers, Department of Chemical and Food Technologies, Dzerzhinsk Polytechnic Institute, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin Street, 603950 Nizhny Novgorod, Russia; (D.O.); (O.K.); (S.O.); (D.K.); (K.O.); (M.S.); (R.K.)
| |
Collapse
|
9
|
Zhang Z, Corrigan N, Boyer C. A Photoinduced Dual-Wavelength Approach for 3D Printing and Self-Healing of Thermosetting Materials. Angew Chem Int Ed Engl 2021; 61:e202114111. [PMID: 34859952 DOI: 10.1002/anie.202114111] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 11/07/2022]
Abstract
Vat photopolymerization-based 3D printing techniques have been widely used to produce high-resolution 3D thermosetting materials. However, the lack of repairability of these thermosets leads to the production of waste. In this study, reversible addition fragmentation chain transfer (RAFT) agents are incorporated into resin formulations to allow visible light (405 nm) mediated 3D printing of materials with self-healing capabilities. The self-healing process is based on the reactivation of RAFT agent embedded in the thermosets under UV light (365 nm), which enables reformation of the polymeric network. The self-healing process can be performed at room temperature without prior deoxygenation. The impact of the type and concentration of RAFT agents in the polymer network on the healing efficiency is explored. Resins containing RAFT agents enable 3D printing of thermosets with self-healing properties, broadening the scope of future applications for polymeric thermosets in various fields.
Collapse
Affiliation(s)
- Zhiheng Zhang
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Hwang M, Jeong JS, Lee JC, Yu S, Jung HS, Cho BS, Kim KY. Composite solid polymer electrolyte with silica filler for structural supercapacitor applications. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0695-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|