1
|
Guo L, Li J, Zhao W, Wei P, Ju Y, Cui X, Yuan L, Ji M, Liu Z. Steric Influences on Chain Microstructure in Palladium-Catalyzed α-Olefin (Co)polymerization: Unveiling the Steric-Deficient Effect. Inorg Chem 2024. [PMID: 39267326 DOI: 10.1021/acs.inorgchem.4c02712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
This study addresses the challenge of controlling branching density and branch-type distribution in late-transition-metal-catalyzed chain walking polymerizations. We explored α-diimine Pd(II) complexes with incrementally increased ortho-aryl sterics for long-chain α-olefin (co)polymerization. Pd0-Pd3 catalysts, which feature gradually increased ortho-aryl sterics and at least one small CH3 substituent, exhibited similar 2,1-insertion fractions (44-50%), polymer branching densities (55-63/1000C), and melting temperatures (26-28 °C). In contrast, Pd4 with bulky ortho-aryl sterics covering all sides demonstrated a significant increase in 2,1-insertion fractions up to 82%, leading to "PE-like" polymers with high melting temperatures (Tm > 111 °C). This abrupt change in polymerization behavior, termed the "steric-deficient effect", contrasts with the gradual changes observed in similar Ni(II) systems that we reported previously. Furthermore, due to the rapid chain walking ability of Pd(II) catalysts in long-chain α-olefin (co)polymerization, these catalysts favor the production of polyolefins with higher proportions of methyl branches compared to those produced by Ni(II) catalysts. Particularly, these Pd(II) catalysts are capable of synthesizing functionalized semicrystalline copolymers by copolymerizing 1-octene with a variety of polar comonomers, thereby significantly altering the surface properties of the materials.
Collapse
Affiliation(s)
- Lihua Guo
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jiaxing Li
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Wei Zhao
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Peng Wei
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yanping Ju
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xiaoru Cui
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Liqing Yuan
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Mingjun Ji
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhe Liu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
2
|
Fang L, Zhao WP, Zhang CY, Zhang XQ, Shen XD, Liu H, Kakuchi T. Highly Efficient and Thermal Robust Cobalt Complexes for 1,3-Butadiene Polymerization. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Fan H, Liao Y, Dai S. Propylene polymerization and copolymerization with polar monomers facilitated by flexible cycloalkyl substituents in α-diimine systems. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Sample CS, Kellstedt EA, Hillmyer MA. Tandem ROMP/Hydrogenation Approach to Hydroxy-Telechelic Linear Polyethylene. ACS Macro Lett 2022; 11:608-614. [PMID: 35570818 DOI: 10.1021/acsmacrolett.2c00144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydroxy-telechelic polyalkenamers have long been synthesized using ring-opening metathesis polymerization (ROMP) in the presence of an acyclic olefin chain-transfer agent (CTA); however, this route typically requires protected diols in the CTA due to the challenge of alcohol-mediated degradation of ruthenium metathesis catalysts that can not only deactivate the catalysts, but also compromise the CTA. We demonstrate the synthesis and implementation of a new hydroxyl-containing CTA in which extended methylene spacers isolate the olefin and alcohol moieties to mitigate decomposition pathways. This CTA enabled the direct ROMP synthesis of hydroxy-telechelic polycyclooctene with controlled chain lengths dictated by the initial ratio of monomer to CTA. The elimination of protection/deprotection steps resulted in improved atom economy. Subsequent hydrogenation of the backbone olefins was performed by a one-pot, catalytic approach employing the ruthenium complex used for the initial ROMP. The resultant approach is a streamlined, atom-economic, and low-waste route to hydroxy-telechelic linear polyethylene that uses a green solvent, succeeds with miniscule quantities of catalyst (0.005 mol %), and requires no additional purification steps.
Collapse
Affiliation(s)
- Caitlin S. Sample
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Elizabeth A. Kellstedt
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
5
|
Yan Z, Xu G, Wang H, Dai S. Synthesis of thermoplastic polyethylene elastomers and ethylene–methyl acrylate copolymers using methylene-bridged binuclear bulky dibenzhydryl α-diimine Ni(II) and Pd(II) catalysts. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Liu L, Wang F, Zhang C, Liu H, Wu G, Zhang X. Thermally robust α-diimine nickel and cobalt complexes for Cis-1,4 selective 1,3-butadiene polymerizations. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Lu W, Xu G, Chang G, Wang H, Dai S. Synthesis of highly branched polyethylene and ethylene-MA copolymers using hybrid bulky α-diimine Pd(II) catalysts. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Ge Y, Li S, Wang H, Dai S. Synthesis of Branched Polyethylene and Ethylene-MA Copolymers Using Unsymmetrical Iminopyridyl Nickel and Palladium Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00388] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- You Ge
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Shuaikang Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Hui Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, China
| | - Shengyu Dai
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, China
| |
Collapse
|
9
|
Ge Y, Li S, Fan W, Dai S. Flexible "Sandwich" (8-Alkylnaphthyl α-Diimine) Catalysts in Insertion Polymerization. Inorg Chem 2021; 60:5673-5681. [PMID: 33783209 DOI: 10.1021/acs.inorgchem.0c03715] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
8-Arylnaphthyl substituents are privileged motifs frequently integrated into late-transition-metal catalysts, endowing them with an ability to retard chain transfer in ethylene polymerization. In this contribution, we disclose a sort of novel α-diiminenickel and -palladium complexes containing flexible 8-alkylnaphthyl in lieu of rigid 8-arylnaphthyl and their catalytic performance in ethylene polymerization. An interesting feature of these 8-alkylnaphthyl-substituted α-(diimine)PdMeCl complexes is that they present as a mixture of syn and anti isomers (syn:anti = ca. 1:1 ratio, determined by 1H and 13C NMR spectroscopy). In ethylene polymerization, these nickel complexes displayed high activity (up to 3.37 × 106 g mol-1 h-1) and generated branched polyethylenes with broad or bimodal molecular weight distributions (4.6-29.3), while the corresponding palladium complexes exhibited moderate activity, producing highly branched polyethylenes with unimodal and narrow molecular weight distributions (<1.8). In ethylene (E)/methyl acrylate (MA) copolymerization, highly branched E-MA copolymers with considerable MA incorporations were achieved by these palladium complexes. Most interestingly, compared to rigid 8-arylnaphthyl-substituted α-diiminenickel and -palladium complexes, the flexible 8-alkylnaphthyl ones showed significantly improved activity and generated lower or comparable molecular weight polyethylenes or E-MA copolymers.
Collapse
Affiliation(s)
- You Ge
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Shuaikang Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Weigang Fan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Shengyu Dai
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
10
|
Hai Z, Lu Z, Li S, Cao ZY, Dai S. The synergistic effect of rigid and flexible substituents on insertion polymerization with α-diimine nickel and palladium catalysts. Polym Chem 2021. [DOI: 10.1039/d1py00812a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The introduction of flexible cycloalkyl groups greatly enhanced the chain growth in the Ni(ii) catalytic system and facilitated the insertion of polar monomers in the Pd(ii) catalytic system.
Collapse
Affiliation(s)
- Zijuan Hai
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Zhou Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Shuaikang Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Shengyu Dai
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| |
Collapse
|
11
|
Lu Z, Wang H, Li S, Dai S. Direct synthesis of various polar functionalized polypropylene materials with tunable molecular weights and high incorporation ratios. Polym Chem 2021. [DOI: 10.1039/d1py01064f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As compared with the classical α-diimine catalyst, iminopyridyl catalysts were observed to be highly efficient for the direct synthesis of polar functionalized polypropylene with tunable molecular weights and high incorporation ratios.
Collapse
Affiliation(s)
- Zhou Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Hui Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Shuaikang Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Shengyu Dai
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|