1
|
Yang C, Wu XT, Yu L, Bi CA, Du FS, Li ZC. Photochemical [2 + 2] Cycloaddition Enables the Synthesis of Highly Thermally Stable and Acid/Base-Resistant Polyesters from a Nonpolymerizable α,β-Conjugated Valerolactone. ACS Macro Lett 2024; 13:1084-1092. [PMID: 39103245 DOI: 10.1021/acsmacrolett.4c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
We report a simple strategy to transform a nonpolymerizable six-membered α,β-conjugated lactone, 5,6-dihydro-2H-pyran-2-one (DPO), into polymerizable bicyclic lactones via photochemical [2 + 2] cycloaddition. Two bicyclic lactones, M1 and M2, were obtained by the photochemical [2 + 2] cycloaddition of tetramethylethylene and DPO. Ring-opening polymerization (ROP) of M1 and M2 catalyzed by diphenyl phosphate (DPP), La[N(SiMe3)2]3, and 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris (dimethylamino) phosphoranylide-namino]-2λ5, 4λ5-catenadi(phosphazene) (tBu-P4) were conducted. M1 is highly polymerizable, either DPP or La[N(SiMe3)2]3 could catalyze its living ROP under mild conditions, affording the well-defined PM1 with a predictable molar mass and low dispersity. M2 could only be polymerized with tBu-P4 as the catalyst, also generating the same polymer PM1. PM1 has high thermal stability, with a Td,5% being up to 376 °C. Ring-opening copolymerization (ROcP) of M1 and δ-valerolactone (δ-VL) catalyzed by La[N(SiMe3)2]3 afforded a series of random copolymers with enhanced thermal stabilities. Both PM1 and the copolymer containing 10 mol % M1 exhibited excellent resistance to acidic and basic hydrolysis. Our results demonstrate that direct photochemical [2 + 2] cycloaddition of α,β-conjugated valerolactone is not only a strategy to tune its polymerizability, but also allows for the synthesis of highly thermally stable aliphatic polyesters, inaccessible by other methods.
Collapse
Affiliation(s)
- Chun Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Centre for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Xiao-Tong Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Centre for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Lefei Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Centre for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Cheng-Ao Bi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Centre for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Centre for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Centre for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Patterson SBH, Wong R, Barker G, Vilela F. Advances in continuous polymer analysis in flow with application towards biopolymers. J Flow Chem 2023. [DOI: 10.1007/s41981-023-00268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
AbstractBiopolymers, polymers derived from renewable biomass sources, have gained increasing attention in recent years due to their potential to replace traditional petroleum-based polymers in a range of applications. Among the many advantages of biopolymers can be included their biocompatibility, excellent mechanical properties, and availability from renewable feedstock. However, the development of biopolymers has been limited by a lack of understanding of their properties and processing behaviours. Continuous analysis techniques have the potential to hasten progress in this area by providing real-time insights into the properties and processing of biopolymers. Significant research in polymer chemistry has focused on petroleum-derived polymers and has thus provided a wealth of synthetic and analytical methodologies which may be applied to the biopolymer field. Of particular note is the application of flow technology in polymer science and its implications for accelerating progress towards more sustainable and environmentally friendly alternatives to traditional petroleum-based polymers. In this mini review we have outlined several of the most prominent use cases for biopolymers along with the current state-of-the art in continuous analysis of polymers in flow, including defining and differentiating atline, inline, online and offline analysis. We have found several examples for continuous flow analysis which have direct application to the biopolymer field, and we demonstrate an atline continuous polymer analysis method using size exclusion chromatography.
Graphical abstract
Collapse
|
3
|
Neidinger P, Davis J, Voll D, Jaatinen EA, Walden SL, Unterreiner AN, Barner‐Kowollik C. Near Infrared Light Induced Radical Polymerization in Water. Angew Chem Int Ed Engl 2022; 61:e202209177. [PMID: 35945906 PMCID: PMC9826492 DOI: 10.1002/anie.202209177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/11/2023]
Abstract
We introduce a gold nanorod (AuNR) driven methodology to induce free radical polymerization in water with near infrared light (800 nm). The process exploits photothermal conversion in AuNR and subsequent heat transfer to a radical initiator (here azobisisobutyronitrile) for primary radical generation. A broad range of reaction conditions were investigated, demonstrating control over molecular weight and reaction conversion of dimethylacrylamide polymers, using nuclear magnetic resonance spectroscopy. We underpin our experimental data with finite element simulation of the spatio-temporal temperature profile surrounding the AuNR directly after femtosecond laser pulse excitation. Critically, we evidence that polymerization can be induced through biological tissues given the enhanced penetration depth of the near infrared light. We submit that the presented initiation mechanism in aqueous systems holds promise for radical polymerization in biological environments, including cells.
Collapse
Affiliation(s)
- Philipp Neidinger
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George StreetBrisbaneQLD 4000Australia
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD 4000Australia
| | - Joshua Davis
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George StreetBrisbaneQLD 4000Australia
| | - Dominik Voll
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT)Engesserstr. 1876131KarlsruheGermany
| | - Esa A. Jaatinen
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George StreetBrisbaneQLD 4000Australia
| | - Sarah L. Walden
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George StreetBrisbaneQLD 4000Australia
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD 4000Australia
| | - Andreas N. Unterreiner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Christopher Barner‐Kowollik
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George StreetBrisbaneQLD 4000Australia
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176297Eggenstein-LeopoldshafenGermany
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD 4000Australia
| |
Collapse
|
4
|
Neidinger P, Davis J, Voll D, Jaatinen E, Walden S, Unterreiner A, Barner-Kowollik C. Near Infrared Light Induced Radical Polymerization in Water. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Philipp Neidinger
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie Institute of Physical Chemistry GERMANY
| | - Joshua Davis
- Queensland University of Technology - QUT: Queensland University of Technology School of Chemistry and Physics AUSTRALIA
| | - Dominik Voll
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie Institute for Polymer Chemistry and Chemical Technology GERMANY
| | - Esa Jaatinen
- Queensland University of Technology - QUT: Queensland University of Technology School of Chemistry and Physics AUSTRALIA
| | - Sarah Walden
- Queensland University of Technology - QUT: Queensland University of Technology School of Chemistry and Physics AUSTRALIA
| | - Andreas Unterreiner
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie Institute of Physical Chemistry GERMANY
| | | |
Collapse
|
5
|
Irshadeen IM, De Bruycker K, Micallef AS, Walden SL, Frisch H, Barner-Kowollik C. Green light LED activated ligation of a scalable, versatile chalcone chromophore. Polym Chem 2021. [DOI: 10.1039/d1py00533b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein we present a photoreactive chalcone moiety that can be synthesized at a scale of several grams with ease, and can efficiently undergo a [2 + 2] photocycloaddition with light close to 500 nm as determined by an action plot.
Collapse
Affiliation(s)
- Ishrath Mohamed Irshadeen
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Kevin De Bruycker
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium
| | - Aaron S. Micallef
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Sarah L. Walden
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|