1
|
Ikami T, Aoki H, Terashima T. Lamellar Microphase Separation and Phase Transition of Hydrogen-Bonding/Crystalline Statistical Copolymers: Amide Functionalization at the Interface. ACS Macro Lett 2024; 13:446-452. [PMID: 38547521 DOI: 10.1021/acsmacrolett.3c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Microphase separation of random copolymers, as well as that of high χ-low N block copolymers, is promising to construct sub-10-nm structures into materials. Herein, we designed statistical copolymers consisting of 2-hydroxyethyl acrylate (HEA) and N-octadecylacrylamide (ODAAm) to produce crystallization and hydrogen bond-assisted lamellar structure materials. The copolymers not only formed a crystalline lamellar structure with 3-4 nm domain spacing but also maintained an amorphous lamellar structure via phase transition above the melting temperature up to approximately 100 °C. The key is to introduce hydrogen-bonding amide junctions between the octadecyl groups and the polymer backbones, by which the polymer chains are physically fixed at the interface of lamellar structures even above the melting temperature. The stabilization of the lamellar structure by the amide units is also supported by the fact that the lamellar structure of all-acrylate random copolymers bearing hydroxyethyl and crystalline octadecyl groups is disordered above the melting temperature. By spin-coating on a silicon substrate, the HEA/ODAAm copolymer formed a multilayered lamellar thin film consisting of a hydrophilic hydroxyethyl/main chain phase and a hydrophobic octadecyl phase. The structure and order-disorder transition were analyzed by neutron reflectivity.
Collapse
Affiliation(s)
- Takaya Ikami
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroyuki Aoki
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka-gun, Ibaraki 319-1195, Japan
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tokai, Naka-gun, Ibaraki 319-1106, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
2
|
Jheng LC, Chang TY, Fan CT, Hsieh TH, Hsieh FM, Huang WJ. Toughening of epoxy thermosets by self-assembled nanostructures of amphiphilic comb-like random copolymers. RSC Adv 2023; 13:33484-33494. [PMID: 38025865 PMCID: PMC10646570 DOI: 10.1039/d3ra06349f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Amphiphilic comb-like random copolymers synthesized from poly(ethylene glycol) methyl ether methacrylate (PEGMMA) and stearyl methacrylate (SMA) with PEGMMA contents ranging between 30 wt% and 25 wt% were demonstrated to self-assemble into various well-defined nanostructures, including spherical micelles, wormlike micelles, and vesicle-like nanodomains, in anhydride-cured epoxy thermosets. In addition, the polymer blends of the comb-like random copolymer and poly(stearyl methacrylate) were prepared and incorporated into epoxy thermosets to form irregularly shaped nanodomains. Our research findings indicate that both the comb-like random copolymers and polymer blends are suitable as toughening modifiers for epoxy. When added at a concentration of 5 wt%, both types of modifiers lead to substantial improvements in the tensile toughness (>289%) and fracture toughness of epoxy thermosets, with minor reductions in their elastic modulus (<16%) and glass transition temperature (<6.1 °C). The fracture toughness evaluated in terms of the critical stress intensity factor (KIC) and the strain energy release rate (GIC) increased by more than 67% and 131% for the modified epoxy thermosets containing comb-like random copolymers.
Collapse
Affiliation(s)
- Li-Cheng Jheng
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology Kaohsiung Taiwan ROC +886 7 3830674 +886 7 3814526 ext.15148
| | - Ting-Yu Chang
- Department of Mold and Die Engineering, National Kaohsiung University of Science and Technology Kaohsiung Taiwan ROC
| | - Chin-Ting Fan
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology Kaohsiung Taiwan ROC +886 7 3830674 +886 7 3814526 ext.15148
| | - Tsung-Han Hsieh
- Department of Mold and Die Engineering, National Kaohsiung University of Science and Technology Kaohsiung Taiwan ROC
| | - Feng-Ming Hsieh
- Material and Chemical Research Laboratories, Industrial Technology Research Institute Hsinchu Taiwan ROC
| | - Wan-Ju Huang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology Kaohsiung Taiwan ROC +886 7 3830674 +886 7 3814526 ext.15148
| |
Collapse
|
3
|
Kikuchi M, Saito N, Ohke M, Nagano S, Nishitsuji S, Matsui J. Order-order transitions in poly( N-octadecyl acrylamide- co-hydroxyethyl acrylamide) statistical copolymer films. SOFT MATTER 2023; 19:3058-3068. [PMID: 37017407 DOI: 10.1039/d3sm00265a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study demonstrates that a simple statistical copolymer can form self-assembled lamellae, whose structures depend on both the comonomer composition and the annealing temperature. Statistical copolymers of octadecyl acrylamide and hydroxyethyl acrylamide [p(ODA/HEAm)] were prepared via free-radical copolymerization, and their thermal properties were studied by differential scanning calorimetry. Thin films of p(ODA/HEAm) were prepared via spin-coating, and their structures were analyzed using X-ray diffraction. It was found that copolymers with HEAm contents between 28 and 50% formed self-assembled lamellae upon annealing at a temperature ∼10 °C above the glass-transition temperature. The self-assembled form was found to possess a "side-chain-mixed" lamellar structure, in which the ODA and HEAm side chains are oriented perpendicular to the lamellar plane composed of the polymer main chain. Interestingly, a copolymer with a HEAm content between 36 and 50% transformed from the side-chain-mixed lamellar structure to generate a "side-chain-segregated" lamellar structure upon annealing at a significantly higher temperature (∼50 °C above Tg). In this structure, the ODA and HEAm side chains were found to be oriented in opposite directions but perpendicular to the lamellar plane. The packing of the side chains in the lamellar structures was studied using Fourier-transform infrared spectroscopy. It was concluded that the structures of the self-assembled lamellae are determined by the strain forces generated during self-assembly, and by the segregation forces existing between the comonomers.
Collapse
Affiliation(s)
- Mao Kikuchi
- Graduate School of Science and Engineering, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Nozomi Saito
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan.
| | - Mizuki Ohke
- Graduate School of Science and Engineering, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Shusaku Nagano
- College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Shotaro Nishitsuji
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa, 992-8510, Japan
| | - Jun Matsui
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan.
| |
Collapse
|
4
|
Imai S, Arakawa M, Nakanishi Y, Takenaka M, Aoki H, Ouchi M, Terashima T. Water-Assisted Microphase Separation of Cationic Random Copolymers into Sub-5 nm Lamellar Materials and Thin Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sahori Imai
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masato Arakawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yohei Nakanishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hiroyuki Aoki
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1, Shirakata, Tokai, Ibaraki 319-1106, Japan
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, 2-4, Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
5
|
Wang WL, Kawai K, Sigemitsu H, Jin RH. Crystalline lamellar films with honeycomb structure from comb-like polymers of poly(2-long-alkyl-2-oxazoline)s. J Colloid Interface Sci 2022; 627:28-39. [PMID: 35841706 DOI: 10.1016/j.jcis.2022.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
Comb-like copolymers are usually structured by grafting polymeric side chains onto main polymer chain. There are few reports of comb-on-comb polymers in which dense secondary side chains are grafted onto primary side chain. In this work, we synthesized comb polymers with grafted-on-graft side chains (c-PEI-g-Acyl) via an effective acylation reaction of comb polymers possessing polyethyleneimine (PEI) side chain with long-alkyl acyl chlorides. For comparison, we also synthesized homopolymers l-PEI-g-Acyls via reaction of linear PEI with long-alkyl acyl chlorides. Then, we investigated their crystalline feature in the film formation by XRD, DSC and SEM, and found that the polymers tend to form hexagonal lamella structures with bilayer alkyl spacing. The comb polymers c-PEI-g-Acyls and linear polymers l-PEI-g-Acyls were used in preparation of honeycomb film by the "breath-figure" process by dropping chloroform solution of the polymers on substrate. Different to many honeycomb polymeric films which are supported by amorphous phase, interestingly, our polymers easily afford honeycomb films which are supported by crystalline lamellae frames under higher humidity condition. It was found that the comb polymers of c-PEI-g-Acyls with longer PEI primary side chain and long alkyl secondary side chain have advantages in producing honeycomb film than linear polymers of l-PEI-g-Acys.
Collapse
Affiliation(s)
- Wen-Li Wang
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan
| | - Kousuke Kawai
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan
| | - Hiroaki Sigemitsu
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan
| | - Ren-Hua Jin
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan.
| |
Collapse
|
6
|
Amada K, Ishizaki M, Kurihara M, Matsui J. Self-Assembly and -Cross-Linking Lamellar Films by Nanophase Separation with Solvent-Induced Anisotropic Structural Changes. ACS OMEGA 2022; 7:16778-16784. [PMID: 35615387 PMCID: PMC9126610 DOI: 10.1021/acsomega.2c01675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
In this study, we have prepared thermally and chemically stable lamellar polymer films via humid annealing. The amphiphilic polymer poly(N-dodecyl acrylamide-stat-3-(trimethoxysilyl)propyl acrylate) [p(DDA/TMSPA)] forms a self-assembled lamellar structure via annealing at 60 °C under 98% relative humidity (humid annealing) due to nanophase separation between the hydrophobic dodecyl side and main chains with the amide groups that contain adsorbed water. Moreover, a self-cross-linking reaction of TMSPA proceeds during the humid annealing. As a result, the lamellar films maintain their structure even when annealed above their glass-transition temperature. On the other hand, the films swell when immersed in toluene. The highly ordered lamellar structure collapses due to the swelling but can be re-established by subsequent humid annealing. A multilayer freestanding film can be exfoliated via sonication in toluene. The exfoliated multilayer films initially form a dome-shaped structure, which is converted to a plate-shaped structure upon humid annealing. In their entirety, these results reveal that the molecular-scale movement associated with the formation of the lamellar structure induces a macroscopic structural change. Consequently, p(DDA/TMSPA) can be considered as a new stimulus-responsive polymer.
Collapse
Affiliation(s)
- Kohei Amada
- Graduate
School of Science and Engineering, Yamagata
University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Manabu Ishizaki
- Faculty
of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Masato Kurihara
- Faculty
of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Jun Matsui
- Faculty
of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| |
Collapse
|
7
|
Ohke M, Matsui J. Rapid Formation of a Lamellar Structure in an Amphiphilic Comb‐Shaped Polymer by Nanophase Separation Using Microwave–Humidity Annealing. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mizuki Ohke
- Graduate School of Science and Engineering, Yamagata University 1‐4‐12 Kojirakawa‐machi Yamagata 990‐8560 Japan
| | - Jun Matsui
- Faculty of Science, Yamagata University 1‐4‐12 Kojirakawa‐machi Yamagata 990‐8560 Japan
| |
Collapse
|
8
|
Ikami T, Watanabe Y, Ogawa H, Takenaka M, Yamada NL, Ouchi M, Aoki H, Terashima T. Multilayered Lamellar Materials and Thin Films by Instant Self-Assembly of Amphiphilic Random Copolymers. ACS Macro Lett 2021; 10:1524-1528. [PMID: 35549143 DOI: 10.1021/acsmacrolett.1c00571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Making ordered nanostructures in polymers and their thin films is an important technique to produce functional materials. Herein, we report instant yet precise self-assembly systems of amphiphilic random copolymers to build multilayered lamellar structures in bulk materials and thin films. Random copolymers bearing octadecyl groups and hydroxyethyl groups induced crystallization-driven microphase separation via simple evaporation from the solutions to form lamellar structures in the solid state. The domain spacing was controlled in the range between 3.1 and 4.2 nm at the 0.1 nm level by tuning copolymer composition. Interestingly, just by spin-coating the polymer solutions onto silicon substrates, the copolymers autonomously formed thin films consisting of multilayered lamellar structures, where amorphous/hydrophilic parts and crystalline octadecyl domains are alternatingly layered from a silicon substrate to the air/polymer interface at regular intervals. The lamellar domain spacing was tunable by selecting hydrophilic pendants.
Collapse
Affiliation(s)
- Takaya Ikami
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuki Watanabe
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hiroki Ogawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Norifumi L. Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1, Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroyuki Aoki
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1, Shirakata, Tokai, Ibaraki 319-1106, Japan
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, 2-4, Shirakata,
Tokai, Ibaraki 319-1195, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
9
|
Le AN, Liang R, Ji X, Fu X, Zhong M. Random copolymerization of macromonomers as a versatile strategy to synthesize mixed‐graft block copolymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- An N. Le
- Department of Chemical and Environmental Engineering Yale University New Haven Connecticut USA
| | - Ruiqi Liang
- Department of Chemical and Environmental Engineering Yale University New Haven Connecticut USA
| | - Xiaoyu Ji
- Department of Chemical and Environmental Engineering Yale University New Haven Connecticut USA
| | - Xiaowei Fu
- Department of Chemical and Environmental Engineering Yale University New Haven Connecticut USA
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering Yale University New Haven Connecticut USA
- Department of Chemistry Yale University New Haven Connecticut USA
| |
Collapse
|
10
|
Niinuma A, Tsukamoto M, Matsui J. Self-Assembled Lamellar Films of Comb-Shaped Copolymers by Segregation between Hydrophobic Side Chains and the Main Chain with Hydrophilic Comonomers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5393-5398. [PMID: 33885305 DOI: 10.1021/acs.langmuir.1c00624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembled lamellar films of poly(N-dodecyl acrylamide-stat-vinyl phosphonic acid) [p(DDA/VPA)] were formed via the segregation between the hydrophilic main chain and VPA and dodecyl side chains. p(DDA/VPA) copolymers were synthesized by free-radical copolymerization of DDA and VPA with VPA molar concentrations of 19% [p(DDA/VPA19)] and 64% [p(DDA/VPA64)]. Both copolymers exhibited a glass-transition temperature (Tg) and melting temperature for p(DDA/VPA19), but no crystalline or liquid-crystalline phase-transition temperatures, which suggests that both copolymers are amorphous. Thin films of the copolymers were prepared by spin coating, and the structure of the films was studied by X-ray diffraction (XRD) measurements. The as-cast films of the copolymers showed broad diffraction patterns, which suggested the formation of alkyl nanodomains similar to that observed in the pDDA homopolymers. On the other hand, the XRD patterns for both copolymer films showed a sharp Bragg diffraction in the low-q region after annealing at 60 °C. Furthermore, the p(DDA/VPA19) film showed first- and second-order Bragg diffractions with a ratio of 1:2. These XRD patterns suggest that the copolymer films form an ordered lamellar structure. We concluded that the main chain became more hydrophilic by the introduction of VPA, resulting in an increased segregation force relative to the hydrophobic dodecyl side chains, which induces the formation of lamellae. Moreover, doping a p(DDA/VPA64) film with imidazole increased the ordering and uniformity of the lamellar structures due to the increased segregation force by the formation of ion pairs in the hydrophilic comonomer. In their entirety, the results show that statistical copolymerization can be used as a new method to create self-assembled structures.
Collapse
|