1
|
Schirato A, Moretti L, Yang Z, Mazzanti A, Cerullo G, Pileni MP, Maiuri M, Della Valle G. Chemically-Controlled Ultrafast Photothermal Response in Plasmonic Nanostructured Assemblies. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:6308-6317. [PMID: 35449522 PMCID: PMC9014708 DOI: 10.1021/acs.jpcc.2c00364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Plasmonic nanoparticles are renowned as efficient heaters due to their capability to resonantly absorb and concentrate electromagnetic radiation, trigger excitation of highly energetic (hot) carriers, and locally convert their excess energy into heat via ultrafast nonradiative relaxation processes. Furthermore, in assembly configurations (i.e., suprastructures), collective effects can even enhance the heating performance. Here, we report on the dynamics of photothermal conversion and the related nonlinear optical response from water-soluble nanoeggs consisting of a Au nanocrystal assembly trapped in a water-soluble shell of ferrite nanocrystals (also called colloidosome) of ∼250-300 nm in size. This nanoegg configuration of the plasmonic assembly enables control of the size of the gold suprastructure core by changing the Au concentration in the chemical synthesis. Different metal concentrations are analyzed by means of ultrafast pump-probe spectroscopy and semiclassical modeling of photothermal dynamics from the onset of hot-carrier photogeneration (few picosecond time scale) to the heating of the matrix ligands in the suprastructure core (hundreds of nanoseconds). Results show the possibility to design and tailor the photothermal properties of the nanoeggs by acting on the core size and indicate superior performances (both in terms of peak temperatures and thermalization speed) compared to conventional (unstructured) nanoheaters of comparable size and chemical composition.
Collapse
Affiliation(s)
- Andrea Schirato
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| | - Luca Moretti
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
| | - Zhijie Yang
- Key
Laboratory of Colloid and Interface Chemistry, Ministry of Education,
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Andrea Mazzanti
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
| | - Giulio Cerullo
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
- Istituto
di Fotonica e Nanotecnologie - Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
| | | | - Margherita Maiuri
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
- Istituto
di Fotonica e Nanotecnologie - Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
| | - Giuseppe Della Valle
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
- Istituto
di Fotonica e Nanotecnologie - Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
| |
Collapse
|