1
|
Thiruppathi KP, Majumder SB. Microwave-Assisted Hydrothermal Synthesis of {100} and {111} Faceted LiFeO 2 Truncated Octahedra: Investigations on Volatile Organic Compound Sensing Performance. Inorg Chem 2024; 63:4545-4556. [PMID: 38394687 DOI: 10.1021/acs.inorgchem.3c03714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Growth of exposed crystal facets has received considerable attention because of their coordinatively unsaturated surface atoms and defect-related surface reactivities. Herein, LiFeO2 truncated octahedra exposed with 6 {100} facets and 8 {111} facets were prepared through a simple microwave-assisted hydrothermal method without using any additives, surfactants, and calcination processes. The detailed growth process revealed that the formation of LiFeO2 truncated octahedra occurred only at the optimized reaction temperature (180 °C), time (30 min), and reactant concentrations. The prepared LiFeO2 truncated octahedra showed excellent sensing responses toward aliphatic organic compounds compared to that against aromatic organic compounds and poor response to inorganic compounds. The response percentages of 150 ppm concentrations of acetone, ethanol, formaldehyde, and isopropyl alcohol are 81.84, 62.91, 62.68, and 69.41%, respectively, at a low operating temperature (100 °C). The presence of exposed facets with their coordinatively unsaturated Li/Fe surface atoms such as 5-fold {100}, 3-fold {111}, 3-fold {100}-{111}, 2-fold {111}-{111}, and 2-fold coordination with the O atom in the vertices facilitated more oxygen vacancies and led to improved surface reactivities as well as sensitivity.
Collapse
Affiliation(s)
- K Palani Thiruppathi
- Advanced Materials Synthesis and Processing Laboratory, Materials Science Centre & School of Nanoscience and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Subhasish Basu Majumder
- Advanced Materials Synthesis and Processing Laboratory, Materials Science Centre & School of Nanoscience and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
2
|
Ramesh Reddy N, Mohan Reddy P, Hak Jung J, Woo Joo S. Construction of various morphological ZnO-NiO S-scheme nanocomposites for photocatalytic dye degradation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Effects of Calcination Temperature on CO-Sensing Mechanism for NiO-Based Gas Sensors. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NiO-sensitive materials have been synthesized via the hydrothermal synthesis route and calcined in air at 400 °C and, alternatively, at 500 °C. Structural, morphological, and spectroscopic investigations were involved. As such, the XRD patterns showed a higher crystallinity degree for the NiO calcined at 500 °C. Such an aspect is in line with the XPS data indicating a lower surface hydroxylation relative to NiO calcined at 400 °C. An HRTEM microstructural investigation revealed that the two samples differ essentially at the morphological level, having different sizes of the crystalline nanoparticles, different density of the surface defects, and preferential faceting according to the main crystallographic planes. In order to identify their specific gas-sensing mechanism towards CO exposure under the in-field atmosphere, the simultaneous evaluation of the electrical resistance and contact potential difference was carried out. The results allowed the decoupling of the water physisorption from the chemisorption of the ambient oxygen species. Thus, the specific CO interaction mechanism induced by the calcination temperature of NiO has been highlighted.
Collapse
|
4
|
Wang H, Ren X, Liu Z, Lv B. Chemical conversion based on the crystal facet effect of transition metal oxides and construction methods for sharp-faced nanocrystals. Chem Commun (Camb) 2022; 58:908-924. [PMID: 34981109 DOI: 10.1039/d1cc06721d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In-depth research has found that the nanocrystal facet of transition metal oxides (TMOs) greatly affects their heterogeneous catalytic performance, as well as the property of photocatalysis, gas sensing, electrochemical reaction, etc. that are all involved in chemical conversion processes. Therefore, the facet-dependent properties of TMO nanocrystals have been fully and carefully studied by combining systematic experiments and theoretical calculations, and mechanisms of chemical reactions are accurately explained at the molecular level, which will be closer to the essence of reactions. Evidently, as an accurate investigation on crystal facets, well-defined TMO nanocrystals are the basis and premise for obtaining relevant credible results, and shape-controlled synthesis of TMO nanocrystals thereby has received great attention and development. The success in understanding of facet-dependent properties and shape-controlled synthesis of TMO nanocrystals is highly valuable for the control of reaction and the design of high-efficiency TMO nanocrystal catalysts as well as other functional materials in practical applications.
Collapse
Affiliation(s)
- Huixiang Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
| | - Xiaobo Ren
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
| | - Zhong Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China. .,Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining, 810008, China
| | - Baoliang Lv
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
| |
Collapse
|
5
|
Reddy NR, Reddy PM, Mandal TK, Reddy KR, Shetti NP, Saleh TA, Joo SW, Aminabhavi TM. Synthesis of novel Co 3O 4 nanocubes-NiO octahedral hybrids for electrochemical energy storage supercapacitors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113484. [PMID: 34391101 DOI: 10.1016/j.jenvman.2021.113484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Fabrication of novel metal oxide nanostructured composites is a proficient approach to develop efficient energy storage devices and development of cost-free and eco-friendly metal oxide nanostructures for supercapacitor applications received considerable attention in recent years. The Co3O4 nanocubes-NiO octahedral structured composite was constructed using facile and one-step calcination process. Cyclic voltammetry, charge-discharge, and electrochemical impedance spectral techniques have been employed to analyze the specific capacitance of the synthesized nanostructures and the composites. Specific capacitance and cycling stability of the composites were evaluated with the pristine Co3O4 and NiO nanostructures. The composite showed a specific capacitance of 832 F g-1 at a current density of 0.25 A g-1, which was ~1.5 and ~1.9-times higher than pristine Co3O4 nanocubes and NiO octahedral structure, respectively. On the other hand, electrode showed approximately 50 % capacity retention at a higher current density (5 Ag-1) because of the uniform morphology of Co3O4 and NiO. The charge-discharge stability measurements of the composite showed an admirable specific capacitance retention capability, which was 94.5 % after 2000 continuous charge-discharge cycles at a current density of 5 A g-1. The superior electrochemical performance of the nano-composite was ascribed to synergistic effects and uniform morphology. Efficient nanostructure development using facile and one-step calcination process and electrochemical performance make the synthesized composite a promising device for supercapacitor applications.
Collapse
Affiliation(s)
- N Ramesh Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - P Mohan Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - T K Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580031, Karnataka, India
| | - Tawfik A Saleh
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India.
| |
Collapse
|
6
|
Hermawan A, Amrillah T, Riapanitra A, Ong W, Yin S. Prospects and Challenges of MXenes as Emerging Sensing Materials for Flexible and Wearable Breath-Based Biomarker Diagnosis. Adv Healthc Mater 2021; 10:e2100970. [PMID: 34318999 DOI: 10.1002/adhm.202100970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Indexed: 12/20/2022]
Abstract
A fully integrated, flexible, and functional sensing device for exhaled breath analysis drastically transforms conventional medical diagnosis to non-invasive, low-cost, real-time, and personalized health care. 2D materials based on MXenes offer multiple advantages for accurately detecting various breath biomarkers compared to conventional semiconducting oxides. High surface sensitivity, large surface-to-weight ratio, room temperature detection, and easy-to-assemble structures are vital parameters for such sensing devices in which MXenes have demonstrated all these properties both experimentally and theoretically. So far, MXenes-based flexible sensor is successfully fabricated at a lab-scale and is predicted to be translated into clinical practice within the next few years. This review presents a potential application of MXenes as emerging materials for flexible and wearable sensor devices. The biomarkers from exhaled breath are described first, with emphasis on metabolic processes and diseases indicated by abnormal biomarkers. Then, biomarkers sensing performances provided by MXenes families and the enhancement strategies are discussed. The method of fabrications toward MXenes integration into various flexible substrates is summarized. Finally, the fundamental challenges and prospects, including portable integration with Internet-of-Thing (IoT) and Artificial Intelligence (AI), are addressed to realize marketization.
Collapse
Affiliation(s)
- Angga Hermawan
- Faculty of Textile Science and Technology Shinshu University 3‐15‐1 Tokida Ueda Nagano 386‐8567 Japan
- Institute of Multidisciplinary Research for Advanced Material (IMRAM) Tohoku University 2‐1‐1 Katahira, Aoba‐ku Sendai Miyagi 980‐8577 Japan
| | - Tahta Amrillah
- Department of Nanotechnology Faculty of Advanced Technology and Multidiscipline Universitas Airlangga Surabaya 60115 Indonesia
| | - Anung Riapanitra
- Department of Chemistry Faculty of Mathematics and Natural Science Jenderal Soedirman University Purwokerto 53122 Indonesia
| | - Wee‐Jun Ong
- School of Energy and Chemical Engineering Xiamen University Malaysia Selangor Darul Ehsan 43900 Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT) Xiamen University Malaysia Sepang Selangor Darul Ehsan 43900 Malaysia
| | - Shu Yin
- Institute of Multidisciplinary Research for Advanced Material (IMRAM) Tohoku University 2‐1‐1 Katahira, Aoba‐ku Sendai Miyagi 980‐8577 Japan
| |
Collapse
|
7
|
Enhanced visible-light-induced photocatalytic NOx degradation over (Ti,C)-BiOBr/Ti3C2Tx MXene nanocomposites: Role of Ti and C doping. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Eco-Friendly Colloidal Aqueous Sol-Gel Process for TiO2 Synthesis: The Peptization Method to Obtain Crystalline and Photoactive Materials at Low Temperature. Catalysts 2021. [DOI: 10.3390/catal11070768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This work reviews an eco-friendly process for producing TiO2 via colloidal aqueous sol–gel synthesis, resulting in crystalline materials without a calcination step. Three types of colloidal aqueous TiO2 are reviewed: the as-synthesized type obtained directly after synthesis, without any specific treatment; the calcined, obtained after a subsequent calcination step; and the hydrothermal, obtained after a specific autoclave treatment. This eco-friendly process is based on the hydrolysis of a Ti precursor in excess of water, followed by the peptization of the precipitated TiO2. Compared to classical TiO2 synthesis, this method results in crystalline TiO2 nanoparticles without any thermal treatment and uses only small amounts of organic chemicals. Depending on the synthesis parameters, the three crystalline phases of TiO2 (anatase, brookite, and rutile) can be obtained. The morphology of the nanoparticles can also be tailored by the synthesis parameters. The most important parameter is the peptizing agent. Indeed, depending on its acidic or basic character and also on its amount, it can modulate the crystallinity and morphology of TiO2. Colloidal aqueous TiO2 photocatalysts are mainly being used in various photocatalytic reactions for organic pollutant degradation. The as-synthesized materials seem to have equivalent photocatalytic efficiency to the photocatalysts post-treated with thermal treatments and the commercial Evonik Aeroxide P25, which is produced by a high-temperature process. Indeed, as-prepared, the TiO2 photocatalysts present a high specific surface area and crystalline phases. Emerging applications are also referenced, such as elaborating catalysts for fuel cells, nanocomposite drug delivery systems, or the inkjet printing of microstructures. Only a few works have explored these new properties, giving a lot of potential avenues for studying this eco-friendly TiO2 synthesis method for innovative implementations.
Collapse
|