1
|
Zuffa C, Veclani D, Marchini M, Monti F, Cappuccino C, Maini L, Ventura B. Rationalization of the structural, electronic and photophysical properties of silver(I) halide n-picolylamine hybrid coordination polymers. Dalton Trans 2025; 54:2799-2811. [PMID: 39804218 DOI: 10.1039/d4dt03003f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Hybrid coordination polimers based on AgX (with X = Cl, Br) and 2-, 3-, 4-picolylamine ligands, obtained by means of solvent-free methods, show peculiar luminescence properties that are strongly influenced by their structural motif, which in turn is defined by the adopted isomer of the ligand. A comprehensive study, combining photophysical methods and DFT calculations, allowed to rationalize the emissive behaviour of such hybrid coordination polymers in relation to their crystal structures and electronic properties. By means of luminescence measurements at variable temperatures, the nature of the emissive excited states and their deactivation dynamics was interpreted, revealing XMLCT transitions in the [(AgX)(2-pica)]n compounds, a TADF behaviour in the case of 3-pica derivatives, and a dual emission at room temperature for the [(AgX)(4-pica)]n family. The presence of low energy CC states, permitted by argentophilic interactions, is also considered in [(AgX)(2-pica)]n, whose structures are characterized by single/double inorganic chains, and in [(AgX)(4-pica)]n, where discrete dimeric Ag2X2 units are present. These findings open new avenues for the design and application of luminescent AgX-based hybrid materials.
Collapse
Affiliation(s)
- Caterina Zuffa
- Università di Bologna, Dipartimento di Chimica "Giacomo Ciamician", Via F. Selmi 2, , 40126, Bologna, Italy.
| | - Daniele Veclani
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Marianna Marchini
- Università di Bologna, Dipartimento di Chimica "Giacomo Ciamician", Via F. Selmi 2, , 40126, Bologna, Italy.
| | - Filippo Monti
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Chiara Cappuccino
- Università di Bologna, Dipartimento di Chimica "Giacomo Ciamician", Via F. Selmi 2, , 40126, Bologna, Italy.
| | - Lucia Maini
- Università di Bologna, Dipartimento di Chimica "Giacomo Ciamician", Via F. Selmi 2, , 40126, Bologna, Italy.
| | - Barbara Ventura
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Via Piero Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
2
|
Ahsan A, Wang X, Sk R, Heydari M, Buimaga-Iarinca L, Wäckerlin C, Lucenti E, Decurtins S, Cariati E, Jung TA, Aschauer U, Liu SX. Self-Assembly of N-Rich Triimidazoles on Ag(111): Mixing the Pleasures and Pains of Epitaxy and Strain. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:23000-23009. [PMID: 38053624 PMCID: PMC10694807 DOI: 10.1021/acs.jpcc.3c03325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/22/2023] [Indexed: 12/07/2023]
Abstract
In the present report, homochiral hydrogen-bonded assemblies of heavily N-doped (C9H6N6) heterocyclic triimidazole (TT) molecules on an Ag(111) substrate were investigated using scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) techniques. The planar and prochiral TT molecules, which exhibit a threefold rotation symmetry and lack mirror symmetry when assembled on the substrate, carry multiple hydrogen-bonding donor and acceptor functionalities, inevitably leading to the formation of hexameric two-dimensionally extended assemblies that can be either homo- (RR/SS) or heterochiral (RS). Experimental STM data showing well-ordered homochiral domains and experimental LEED data are consistent with simulations assuming the R19.1° overlayer on the Ag(111) lattice. Importantly, we report the unexpected coincidence of spontaneous resolution with the condensation of neighboring islands in adjacent "Janus pairs". The islands are connected by a characteristic fault zone, an observation that we discuss in the context of the fairly symmetric molecule and its propensity to compromise and benefit from interisland bonding at the expense of lattice mismatches and strain in the defect zone. We relate this to the close to triangular shape and the substantial but weak bonding scheme beyond van der Waals (vdW) of the TT molecules, which is due to the three N-containing five-membered imidazole rings. Density functional theory (DFT) calculations show clear energetic differences between homochiral and heterochiral pairwise interactions, clearly supporting the experimental results.
Collapse
Affiliation(s)
- Aisha Ahsan
- Laboratory
for X-ray Nanoscience and Technologies, Paul Scherrer Institute, Villigen-PSI 5232, Switzerland
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Xing Wang
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Rejaul Sk
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Mehdi Heydari
- Laboratory
for X-ray Nanoscience and Technologies, Paul Scherrer Institute, Villigen-PSI 5232, Switzerland
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Luiza Buimaga-Iarinca
- National
Institute for Research and Development of Isotopic and Molecular Technologies
(INCDTIM), Donat Str., Cluj-Napoca 67-103, Romania
| | - Christian Wäckerlin
- Laboratory
for X-ray Nanoscience and Technologies, Paul Scherrer Institute, Villigen-PSI 5232, Switzerland
- Institute
of Physics, École Polytechnique Fédérale de Lausanne Station 3, Lausanne 1015, Switzerland
| | - Elena Lucenti
- Institute
of Chemical Sciences and Technologies “Giulio Natta”
(SCITEC) of CNR, via Golgi 19, Milano 20133, Italy
| | - Silvio Decurtins
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Elena Cariati
- Institute
of Chemical Sciences and Technologies “Giulio Natta”
(SCITEC) of CNR, via Golgi 19, Milano 20133, Italy
- Department
of Chemistry, Università degli Studi di Milano and INSTM RU Via Golgi 19, Milano 20133, Italy
| | - Thomas A. Jung
- Laboratory
for X-ray Nanoscience and Technologies, Paul Scherrer Institute, Villigen-PSI 5232, Switzerland
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Ulrich Aschauer
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob-Haringer-Str. 2A, Salzburg 5020, Austria
| | - Shi-Xia Liu
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| |
Collapse
|
3
|
Romo-Islas G, Ward JS, Rissanen K, Rodríguez L. Heterometallic Au(I)-Cu(I) Clusters: Luminescence Studies and 1O 2 Production. Inorg Chem 2023; 62:8101-8111. [PMID: 37191273 DOI: 10.1021/acs.inorgchem.3c00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Two different organometallic gold(I) compounds containing naphthalene and phenanthrene as fluorophores and 2-pyridyldiphenylphosphane as the ancillary ligand were synthesized (compounds 1 with naphthalene and 2 with phenanthrene). They were reacted with three different copper(I) salts with different counterions (PF6-, OTf-, and BF4-; OTf = triflate) to obtain six Au(I)/Cu(I) heterometallic clusters (compounds 1a-c for naphthalene derivatives and 2a-c for phenanthrene derivatives). The heterometallic compounds present red pure room-temperature phosphorescence in both solution, the solid state, and air-equilibrated samples, as a difference with the dual emission recorded for the gold(I) precursors 1 and 2. The presence of Au(I)-Cu(I) metallophilic contacts has been identified using single-crystal X-ray diffraction structure resolution of two of the compounds, which play a direct role in the resulting red-shifted emission with respect to the gold(I) homometallic precursors. Polystyrene (PS) and poly(methyl methacrylate) (PMMA) polymeric matrices were doped with our luminescent compounds, and the resulting changes in their emissive properties were analyzed and compared with those previously recorded in the solution and the solid state. All complexes were tested to analyze their ability to produce 1O2 and present very good values of ΦΔ up to 50%.
Collapse
Affiliation(s)
- Guillermo Romo-Islas
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Blasi D, Quici S, Orlandi S, Mercandelli P, Sokolov AV, Alexandrov EV, Carlucci L. Design and synthesis of new luminescent coordination networks of sql topology showing the highest degrees of interpenetration. CrystEngComm 2022. [DOI: 10.1039/d2ce00884j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The highest degree of interpenetration reported so far of 7- and 8-fold is realized in two luminescent sql 2D networks by self-assembly of a new nanometric-sized ligand with Ag(i) salts.
Collapse
Affiliation(s)
- Delia Blasi
- Dipartimento di Chimica, Università degli Studi di Milano, via Camillo Golgi 19, 20133 Milano, Italy
| | - Silvio Quici
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Consiglio Nazionale delle Ricerche (CNR), via Camillo Golgi 19, 20133 Milano, Italy
| | - Simonetta Orlandi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Consiglio Nazionale delle Ricerche (CNR), via Camillo Golgi 19, 20133 Milano, Italy
| | - Pierluigi Mercandelli
- Dipartimento di Chimica, Università degli Studi di Milano, via Camillo Golgi 19, 20133 Milano, Italy
| | - Andrey V. Sokolov
- Institute of Experimental Medicine and Biotechnology, Samara State Medical University, Chapayevskaya St. 89, Samara 443099, Russian Federation
| | - Eugeny V. Alexandrov
- Institute of Experimental Medicine and Biotechnology, Samara State Medical University, Chapayevskaya St. 89, Samara 443099, Russian Federation
- Samara Center for Theoretical Material Science (SCTMS), Samara State Technical University, Molodogvardeyskaya St. 244, Samara 443100, Russian Federation
- Samara Branch of P.N. Lebedev Physical Institute of the Russian Academy of Science, Novo-Sadovaya St. 221, Samara 443011, Russian Federation
| | - Lucia Carlucci
- Dipartimento di Chimica, Università degli Studi di Milano, via Camillo Golgi 19, 20133 Milano, Italy
| |
Collapse
|
5
|
Melnic E, Kravtsov VC, Lucenti E, Cariati E, Forni A, Siminel N, Fonari MS. Regulation of π⋯π stacking interactions between triimidazole luminophores and comprehensive emission quenching by coordination to Cu( ii). NEW J CHEM 2021. [DOI: 10.1039/d1nj00909e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pioneering work demonstrating coordination preferences towards Cu(ii) of unexplored cyclic triimidazole-based luminophores and their favorable stacking patterns in coordination compounds.
Collapse
Affiliation(s)
| | | | - Elena Lucenti
- Institute of Sciences and Chemical Technologies “Giulio Natta” (SCITEC) of CNR and INSTM RU
- 20133 Milano
- Italy
| | - Elena Cariati
- Institute of Sciences and Chemical Technologies “Giulio Natta” (SCITEC) of CNR and INSTM RU
- 20133 Milano
- Italy
- Dipartimento di Chimica
- Università degli Studi di Milano and INSTM RU
| | - Alessandra Forni
- Institute of Sciences and Chemical Technologies “Giulio Natta” (SCITEC) of CNR and INSTM RU
- 20133 Milano
- Italy
| | | | | |
Collapse
|