1
|
Tu C, Yang Y, Du J, Ling C, Fu S, Liu B. Asymmetric Construction of the Tricyclic Core Structure of Prostratin. Org Lett 2025; 27:1579-1583. [PMID: 39920087 DOI: 10.1021/acs.orglett.4c03606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
A synthetic study on asymmetric construction of the tricyclic core structure of prostratin is developed through a convergent strategy. Critical to the success of this endeavor is the strategic use of intermolecular allylic nucleophilic substitution to assemble the ring A system and ring C system while utilizing intramolecular nucleophilic addition to close the seven-membered ring.
Collapse
Affiliation(s)
- Canhui Tu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yunlong Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jiaxin Du
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Cichang Ling
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Vasilev VH, Spessert L, Yu K, Maimone TJ. Total Synthesis of Resiniferatoxin. J Am Chem Soc 2022; 144:16332-16337. [PMID: 36043948 DOI: 10.1021/jacs.2c08200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
From both structural and functional perspectives, the large family of daphnane diterpene orthoesters (DDOs) represent a truly remarkable class of natural products. As potent lead compounds for the treatment of pain, neurodegeneration, HIV/AIDS, and cancer, their medicinal potential continues to be heavily investigated, yet synthetic routes to DDO natural products remain rare. Herein we report a distinct approach to this class of complex diterpenes, highlighted by a 15-step total synthesis of the flagship DDO, resiniferatoxin.
Collapse
Affiliation(s)
- Vasil H Vasilev
- Department of Chemistry, University of California-Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| | - Lukas Spessert
- Department of Chemistry, University of California-Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| | - Kuan Yu
- Department of Chemistry, University of California-Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| | - Thomas J Maimone
- Department of Chemistry, University of California-Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Cui Y, Lv J, Song T, Ren J, Wang Z. Highly efficient construction of an oxa-[3.2.1]octane-embedded 5-7-6 tricyclic carbon skeleton and ring-opening of the bridged ring via C-O bond cleavage. RSC Adv 2022; 12:9519-9523. [PMID: 35424922 PMCID: PMC8985103 DOI: 10.1039/d2ra01315k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
We report herein a highly efficient strategy for construction of a bridged oxa-[3.2.1]octane-embedded 5–7–6 tricyclic carbon skeleton through [3 + 2] IMCC (intramolecular [3 + 2] cross-cycloaddition), and the substituents and/or stereochemistries on C-4, C-6, C-7 and C-10 fully match those in the rhamnofolane, tigliane and daphnane diterpenoids. Furthermore, ring-opening of the bridged oxa-[3.2.1]octane via C–O bond cleavage was also successfully achieved. We reported a highly efficient construction of an oxa-[3.2.1]octane-embedded 5–7–6 tricyclic carbon skeleton with a full match of the substituents and stereochemistries on C-4/-6/-7/-10 with those in the rhamnofolane/tigliane/daphnane diterpenoids.![]()
Collapse
Affiliation(s)
- Yi Cui
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Jiayuan Lv
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Tianhang Song
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Jun Ren
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Zhongwen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 PR China
| |
Collapse
|
4
|
Xu M, Cai Q. Progress of Catalytic Asymmetric Diels-Alder Reactions of 2-Pyrones. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Affiliation(s)
- Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Rd Chengdu Sichuan 610064 China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Rd Chengdu Sichuan 610064 China
| |
Collapse
|
6
|
Hirose A, Watanabe A, Ogino K, Nagatomo M, Inoue M. Unified Total Syntheses of Rhamnofolane, Tigliane, and Daphnane Diterpenoids. J Am Chem Soc 2021; 143:12387-12396. [PMID: 34319739 DOI: 10.1021/jacs.1c06450] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rhamnofolane, tigliane, and daphnane diterpenoids are structurally complex natural products with multiple oxygen functionalities, making them synthetically challenging. While these diterpenoids share a 5/7/6-trans-fused ring system (ABC-ring), the three-carbon substitutions at the C13- and C14-positions on the C-ring and appending oxygen functional groups differ among them, accounting for the disparate biological activities of these natural products. Here, we developed a new, unified strategy for expeditious total syntheses of five representative members of these three families, crotophorbolone (1), langduin A (2), prostratin (3), resiniferatoxin (4), and tinyatoxin (5). Retrosynthetically, 1-5 were simplified into their common ABC-ring 6 by detaching the three-carbon units and the oxygen-appended groups. Intermediate 6 with six stereocenters was assembled from four achiral fragments in 12 steps by integrating three powerful transformations, as follows: (i) asymmetric Diels-Alder reaction to induce formation of the C-ring; (ii) π-allyl Stille coupling reaction to set the trisubstituted E-olefin of the B-ring; and (iii) Eu(fod)3-promoted 7-endo cyclization of the B-ring via the generation of a bridgehead radical. Then 6 was diversified into 1-5 by selective installation of the different functional groups. Attachment of the C14-β-isopropenyl and isopropyl groups led to 1 and 2, respectively, while oxidative acetoxylation and C13,14-β-dimethylcyclopropane formation gave rise to 3. Finally, formation of an α-oriented caged orthoester by C13-stereochemical inversion and esterification with two different homovanillic acids delivered 4 and 5 with a C13-β-isopropenyl group. This unified synthetic route to 1-5 required only 16-20 total steps, demonstrating the exceptional efficiency of the present strategy.
Collapse
Affiliation(s)
- Akira Hirose
- Graduate School of Pharmaceutical Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ayumu Watanabe
- Graduate School of Pharmaceutical Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kohei Ogino
- Graduate School of Pharmaceutical Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Liu Z, Ding Z, Chen K, Xu M, Yu T, Tong G, Zhang H, Li P. Balancing skeleton and functional groups in total syntheses of complex natural products: a case study of tigliane, daphnane and ingenane diterpenoids. Nat Prod Rep 2021; 38:1589-1617. [PMID: 33508045 DOI: 10.1039/d0np00086h] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Total synthesis of natural products has greatly contributed to natural product research, organic synthesis and drug discovery and development. However, in most cases, the efficiency of total synthesis is far from sufficient for direct practical industrial application. Thus, designing a concise and efficient synthetic route with balanced efforts between building the complex skeleton and introducing functional groups is highly desirable. In this critical review, we first present an introduction of this issue and a philosophical framework that cover possible synthetic approaches. Next, we have chosen the biogenetically closely related, biologically important and synthetically extremely challenging natural products, tiglianes, daphnanes and ingenanes as the particular case for the discussion, since in the past 40 years many synthetic approaches have been reported. The successes and pitfalls included therefore serve as the basis to draw some conclusions that may inspire future development in this area.
Collapse
Affiliation(s)
- Zhi Liu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Zhengwei Ding
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Kai Chen
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Ming Xu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Tao Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Guanghu Tong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, LaJolla, California 92037, USA
| | - Hailong Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China. and State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|