1
|
Zhao Q, Li Y, Ren Z, Shao YB, Chen L, Li X. Catalytic Asymmetric Reactions of Ketimines and Alkenes via [2 + 2] Cycloaddition: Chemical Reactivity Controlled by Switching a Heteroatom. J Am Chem Soc 2024; 146:32088-32097. [PMID: 39513761 DOI: 10.1021/jacs.4c13302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Azetidine units are commonly found in natural products and biologically active drugs. The [2 + 2] cycloaddition of imines and alkenes has been extensively used in the synthesis of such structures, while enantioselective approaches remain elusive. Herein, an efficient B(C6F5)3/chiral phosphoric acid-catalyzed asymmetric [2 + 2] cycloaddition of ketimines and aryl vinyl selenides was presented, delivering valuable chiral azetidines with excellent stereoselectivities (>20:1 dr and up to 96:4 er). What's even more interesting was that when a "Se" atom was switched to an "S" atom, the reaction proceeded through a [2 + 2] cycloaddition/ring-opening cascade process, affording a range of chiral thioacetals with high enantioselectivities (up to 98:2 er), which were also important organic sulfur compounds. Mechanistic experiments, coupled with density functional theory (DFT) calculations, shed light on a mechanism involving stepwise [2 + 2] cycloaddition and ring-opening processes, with the initial alkenylation step identified as crucial for achieving stereoselective control.
Collapse
Affiliation(s)
- Qun Zhao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yao Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhiyuan Ren
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ying-Bo Shao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Li Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
2
|
Kutateladze DA, Jacobsen EN. Cooperative Hydrogen-Bond-Donor Catalysis with Hydrogen Chloride Enables Highly Enantioselective Prins Cyclization Reactions. J Am Chem Soc 2021; 143:20077-20083. [PMID: 34812618 PMCID: PMC8717859 DOI: 10.1021/jacs.1c10890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cooperative asymmetric catalysis with hydrogen chloride (HCl) and chiral dual-hydrogen-bond donors (HBDs) is applied successfully to highly enantioselective Prins cyclization reactions of a wide variety of simple alkenyl aldehydes. The optimal chiral catalysts were designed to withstand the strongly acidic reaction conditions and were found to induce rate accelerations of 2 orders of magnitude over reactions catalyzed by HCl alone. We propose that the combination of strong mineral acids and chiral hydrogen-bond-donor catalysts may represent a general strategy for inducing enantioselectivity in reactions that require highly acidic conditions.
Collapse
Affiliation(s)
- Dennis A. Kutateladze
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eric N. Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
3
|
Caballero-García G, Goodman JM. N-Triflylphosphoramides: highly acidic catalysts for asymmetric transformations. Org Biomol Chem 2021; 19:9565-9618. [PMID: 34723293 DOI: 10.1039/d1ob01708j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
N-Triflylphosphoramides (NTPA), have become increasingly popular catalysts in the development of enantioselective transformations as they are stronger Brønsted acids than the corresponding phosphoric acids (PA). Their highly acidic, asymmetric active site can activate difficult, unreactive substrates. In this review, we present an account of asymmetric transformations using this type of catalyst that have been reported in the past ten years and we classify these reactions using the enantio-determining step as the key criterion. This compendium of NTPA-catalysed reactions is organised into the following categories: (1) cycloadditions, (2) electrocyclisations, polyene and related cyclisations, (3) addition reactions to imines, (4) electrophilic aromatic substitutions, (5) addition reactions to carbocations, (6) aldol and related reactions, (7) addition reactions to double bonds, and (8) rearrangements and desymmetrisations. We highlight the use of NTPA in total synthesis and suggest mnemonics which account for their enantioselectivity.
Collapse
Affiliation(s)
| | - Jonathan M Goodman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| |
Collapse
|
4
|
Balha M, Parida C, Chandra Pan S. Organocatalytic Asymmetric Ene Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Megha Balha
- Department of Chemistry Pandit Deendayal Energy University Gandhinagar Gujarat 382421 India
| | - Chandrakanta Parida
- Department of Chemistry Indian Institute of Technology Guwahati Assam 781039 India
| | - Subhas Chandra Pan
- Department of Chemistry Indian Institute of Technology Guwahati Assam 781039 India
| |
Collapse
|