1
|
Guo W, Zi L, Yang J, Wang Y, Zhu S. Through-Space 1,4-Ni/H Shift: Unlocking Migration along Coupling Partners in Olefin Borylcarbofunctionalization. Angew Chem Int Ed Engl 2025:e202503671. [PMID: 40213907 DOI: 10.1002/anie.202503671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Olefin migratory functionalization is a well-established strategy for the selective installation of functional groups at remote C(sp3)-H positions along an alkyl chain. However, prior research has predominantly focused on migration along the alkene component. Herein, we describe a conceptually new migratory coupling strategy for the difunctionalization of alkenes, where migration selectively occurs along the C(sp2) coupling partner rather than the alkene component, facilitated by a through-space 1,4-Ni/H shift. This approach offers a modular three-component strategy for the selective and efficient construction of densely functionalized alkyl boronates from readily accessible chemicals. Moreover, by integrating the 1,2-Ni/H shift with the 1,4-Ni/H shift, this platform has been expanded to achieve a two-fold migration along both the alkene components and the coupling partners, facilitating selective borylative remote C(sp3)─H/C(sp2)─H cross-coupling.
Collapse
Affiliation(s)
- Wenqing Guo
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Letian Zi
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jingjie Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - You Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Guo C, Zhang J, Ge Y, Qiu Z, Xie Z. Asymmetric Palladium Migration for Synthesis of Chiral-at-Cage o-Carboranes. Angew Chem Int Ed Engl 2025; 64:e202416987. [PMID: 39438633 DOI: 10.1002/anie.202416987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Metal migration strategy can offer BH functionalization of o-carboranes at different positions from where initial bond activation occurs to achieve bifunctionalized o-carboranes in one reaction. We report in this article an enantioselective 3,4-bifunctionalization of o-carboranes via asymmetric Pd migration with a high efficiency and up to 98 % ee. This asymmetric catalysis has a broad substrates scope, leading to the preparation of a class of chiral-at-cage o-carborane derivatives. The enantiocontrol model is suggested on the basis of density functional theory (DFT) results, where the chiral Trost ligand plays a crucial role in this enantioselective Pd migration from exo-alkenyl sp2 C to the cage B(4) position of o-carborane.
Collapse
Affiliation(s)
- Chenyang Guo
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jie Zhang
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, China
| | - Yixiu Ge
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- International Joint Laboratory of Catalytic Chemistry, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Ding L, Wang M, Liu Y, Lu H, Zhao Y, Shi Z. Stereoselective Vinylic C-H Addition via Metallaphotoredox Migration. Angew Chem Int Ed Engl 2025; 64:e202413557. [PMID: 39322622 DOI: 10.1002/anie.202413557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Geometrically defined allylic alcohols with SE, SZ, RE and RZ stereoisomers serve as valuable intermediates in synthetic chemistry, attributed to the stereoselective transformations enabled by the alkenyl and hydroxyl functionalities. When an ideal scenario presents itself with four distinct stereoisomers as potential products, the simultaneous control vicinal stereochemistry in a single step would offer a direct pathway to any desired stereoisomer. Here, we unveil a metallaphotoredox migration strategy to access stereodefined allylic alcohols through vinylic C-H activation with aldehydes. This method harnesses a chiral nickel catalyst in concert with a photocatalyst to enable a 1,4-Ni migration by using readily accessible 2-vinyl iodoarenes as starting materials. The efficacy of this methodology is highlighted by the precise construction of all stereoisomers of allylic alcohols bearing analogous substituents and the efficient synthesis of key intermediates en route to Myristinin family. Experimental and computational studies have shed light on pivotal aspects including the synergy of metal catalysis and photocatalysis, the driving forces behind the migration, and the determination of absolute configuration in the C-H addition process.
Collapse
Affiliation(s)
- Linlin Ding
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yiming Liu
- Department of Chemistry, University of California, Davis, California, Davis, 95616, United States
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing
- China and School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
| |
Collapse
|
4
|
Sun C, Qi T, Rahman FU, Hayashi T, Ming J. Ligand-controlled regiodivergent arylation of aryl(alkyl)alkynes and asymmetric synthesis of axially chiral 9-alkylidene-9,10-dihydroanthracenes. Nat Commun 2024; 15:9307. [PMID: 39468097 PMCID: PMC11519556 DOI: 10.1038/s41467-024-53767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Transition metal-catalyzed addition of organometallics to aryl(alkyl)alkynes has been well known to proceed with the regioselectivity in forming a carbon-carbon bond at the alkyl-substituted carbon (β-addition). Herein, the reverse regiochemistry with high selectivity in giving 1,1-diarylalkenes (α-addition) was realized in the reaction of arylboronic acids with aryl(alkyl)alkynes by use of a rhodium catalyst coordinated with a chiral diene ligand, whereas the arylation of the same alkynes proceeded with the usual regioselectivity (β-addition) in the presence of a rhodium/DM-BINAP catalyst. The regioselectivity can be switched by the choice of ligands on the rhodium catalysts. This reverse regioselectivity also enabled the catalytic asymmetric synthesis of phoenix-like axially chiral alkylidene dihydroanthracenes with high enantioselectivity through an α-addition/1,4-migration/cyclization sequence.
Collapse
Affiliation(s)
- Chao Sun
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Ting Qi
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Faiz-Ur Rahman
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Tamio Hayashi
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - Jialin Ming
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China.
| |
Collapse
|
5
|
Full F, Artigas A, Wiegand K, Volland D, Szkodzińska K, Coquerel Y, Nowak-Król A. Controllable 1,4-Palladium Aryl to Aryl Migration in Fused Systems─Application to the Synthesis of Azaborole Multihelicenes. J Am Chem Soc 2024; 146:29245-29254. [PMID: 39392613 DOI: 10.1021/jacs.4c12562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Herein, we report the first 1,4-Pd aryl to aryl migration/Miyaura borylation tandem reaction in fused systems. The Pd shift occurred in the bay region of the dibenzo[g,p]chrysene building blocks, giving rise to a thermodynamically controlled mixture of 1,8- and 1,9-borylated compounds that allowed the preparation of regioisomeric azaborole multihelicenes from the same starting material. The outcome of this synthesis can be controlled by the choice of reaction conditions, allowing the migration process to be turned off in the absence of an acetate additive and the target multiheterohelicenes to be prepared in a regioselective manner. The target compounds show bright green fluorescence in dichloromethane with emission quantum yields (Φ) of up to 0.29, |glum| values up to 2.7 × 10-3, and green or green-yellow emission in the solid state, reaching Φ of 0.22. Single crystal X-ray diffraction analyses gave insight into their molecular structures and the packing arrangement. Evaluation of aromaticity in these multihelicenes revealed a nonaromatic character of the 2H-1,2-azaborole constituent rings.
Collapse
Affiliation(s)
- Felix Full
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Albert Artigas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona (UdG), Facultat de Ciències, C/ Maria Aurèlia Capmany, 69, Girona, Catalunya 17003, Spain
| | - Kevin Wiegand
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Daniel Volland
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Klaudia Szkodzińska
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Yoann Coquerel
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, Marseille 13397, France
| | - Agnieszka Nowak-Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
6
|
Shi Y, Qin Y, Li ZQ, Xu Y, Chen S, Zhang J, Li YA, Wu Y, Meng F, Zhong YW, Zhao D. Divergent Synthesis of Enantioenriched Silicon-Stereogenic Benzyl-, Vinyl- and Borylsilanes via Asymmetric Aryl to Alkyl 1,5-Palladium Migration. Angew Chem Int Ed Engl 2024; 63:e202405520. [PMID: 38896428 DOI: 10.1002/anie.202405520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Functionalization of Si-bound methyl group provides an efficient access to diverse organosilanes. However, the asymmetric construction of silicon-stereogenic architectures by functionalization of Si-bound methyl group has not yet been described despite recent significant progress in producing chiral silicon. Herein, we disclosed the enantioselective silylmethyl functionalization involving the aryl to alkyl 1,5-palladium migration to access diverse naphthalenes possessing an enantioenriched stereogenic silicon center, which are inaccessible before. It is worthy to note that the realization of asymmetric induction at the step of metal migration itself remains challenging. Our study constitutes the first enantioselective aryl to alkyl 1,5-palladium migration reaction. The key to the success is the discovery and fine-tuning of the different substituents of α,α,α,α-tetraaryl-1,3-dioxolane-4,5-dimethanol (TADDOL)-based phosphoramidites, which ensure the enantioselectivity and desired reactivity.
Collapse
Affiliation(s)
- Yufeng Shi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ying Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhong-Qiu Li
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yize Xu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shuhan Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jinyu Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yu-An Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yaxin Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Fei Meng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
7
|
Mbaezue II, Li SG, Reddy ACS, Titi HM, Tsantrizos YS. Solvent-Switchable Remote C-H Activation via 1,4-Palladium Migration Enables Site-Selective C-P Bond Formation: A Tool for the Synthesis of P-Chiral Phosphinyl Imidazoles. Org Lett 2024; 26:4200-4204. [PMID: 38739265 DOI: 10.1021/acs.orglett.4c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Solvent-switchable and site-selective phosphorylation of imidazoles at the C2 or C5 position of the imidazole ring was achieved via 1,4-palladium migration. P-Chiral tert-butyl(aryl)phosphine oxides were cross-coupled to 1-(2-bromophenyl)-1H-imidazoles with high enantiospecificity, thereby leading to a novel class of chiral imidazole-based phosphine oxides. As proof of concept, reduction of an analogue yielded the corresponding P-chiral 2-phosphinyl imidazole ligand, which was shown to induce high enantioselectivity in the formation of axially chiral molecules synthesized via Pd-catalyzed Suzuki-Miyaura cross-coupling.
Collapse
Affiliation(s)
- Ifenna I Mbaezue
- Department of Chemistry, McGill University. 801 Sherbrooke St. West, Montréal, Québec H3A 0B8, Canada
| | - Shi-Guang Li
- Department of Chemistry, McGill University. 801 Sherbrooke St. West, Montréal, Québec H3A 0B8, Canada
| | - Angula C S Reddy
- Department of Chemistry, McGill University. 801 Sherbrooke St. West, Montréal, Québec H3A 0B8, Canada
| | - Hatem M Titi
- Department of Chemistry, McGill University. 801 Sherbrooke St. West, Montréal, Québec H3A 0B8, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University. 801 Sherbrooke St. West, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|
8
|
Hayashi D, Tsuda T, Shintani R. Palladium-Catalyzed Skeletal Rearrangement of Substituted 2-Silylaryl Triflates via 1,5-C-Pd/C-Si Bond Exchange. Angew Chem Int Ed Engl 2023; 62:e202313171. [PMID: 37935641 DOI: 10.1002/anie.202313171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/09/2023]
Abstract
A palladium-catalyzed skeletal rearrangement of 2-(2-allylarylsilyl)aryl triflates has been developed to give highly fused tetrahydrophenanthrosilole derivatives via unprecedented 1,5-C-Pd/C-Si bond exchange. The reaction pathways can be switched toward 4-membered ring-forming C(sp2 )-H alkylation by tuning the reaction conditions to give completely different products, fused dihydrodibenzosilepin derivatives, from the same starting materials. The inspection of the reaction conditions revealed the importance of carboxylates in promoting the C-Pd/C-Si bond exchange.
Collapse
Affiliation(s)
- Daigo Hayashi
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Tomohiro Tsuda
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Moniwa H, Yamanaka M, Shintani R. Copper-Catalyzed Regio- and Stereoselective Formal Hydro(borylmethylsilyl)ation of Internal Alkynes via Alkenyl-to-Alkyl 1,4-Copper Migration. J Am Chem Soc 2023; 145:23470-23477. [PMID: 37852271 DOI: 10.1021/jacs.3c06187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Catalytic reactions involving 1,n-metal migration from carbon to carbon enable a nonclassical way of constructing organic molecular skeletons, rapidly providing complex molecules from relatively simple precursors. By utilization of this attractive feature, a new and efficient synthesis of alkenylsilylmethylboronates has been developed by formal hydro(borylmethylsilyl)ation of unsymmetric internal alkynes with silylboronates under copper catalysis. The reaction proceeds regioselectively and involves an unprecedented alkenyl-to-alkyl 1,4-copper migration. The reaction mechanism has been investigated by a series of kinetic, NMR, and deuterium-labeling experiments.
Collapse
Affiliation(s)
- Hirokazu Moniwa
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka560-8531, Japan
| | - Masahiro Yamanaka
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
10
|
Chen D, Li J, Zhang X, Liu G, Wang X, Liu Y, Liu X, Shan Y. Rapid Access to Fused Tetracyclic N-Heterocycles via Amino-to-Alkyl 1,5-Palladium Migration Coupled with Intramolecular C(sp 3)-C(sp 2) Coupling. Org Lett 2023; 25:6272-6277. [PMID: 37607048 DOI: 10.1021/acs.orglett.3c02034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
An unprecedented route for the preparation of fused tetracyclic N-heterocycles is presented through the palladium-catalyzed cyclization of isocyanides with alkyne-tethered aryl iodides. In this transformation, a novel amino-to-alkyl 1,5-palladium migration/intramolecular C(sp3)-C(sp2) coupling sequence was observed first. More importantly, isocyanide exhibited three roles, serving simultaneously as a C1 synthon, a C1N1 synthon, and the donor of C(sp3) for C(sp3)-C(sp2) coupling, and the reaction was the sole successful example that achieved C(sp3)-H activation of isocyanide.
Collapse
Affiliation(s)
- Dianpeng Chen
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jianming Li
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xiuhua Zhang
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Gongle Liu
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xin Wang
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Yongwei Liu
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xuan Liu
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Yingying Shan
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| |
Collapse
|
11
|
Chen D, Li J, Liu G, Zhang X, Wang X, Liu Y, Liu X, Liu X, Li Y, Shan Y. Accessing indole-isoindole derivatives via palladium-catalyzed [3+2] cyclization of isocyanides with alkynyl imines. Chem Commun (Camb) 2023; 59:10540-10543. [PMID: 37566103 DOI: 10.1039/d3cc02654j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A facile protocol for the preparation of indole-isoindole derivatives was developed and proceeds via a palladium-catalyzed [3+2] cyclization of isocyanides with alkynyl imines. In this transformation, the palladium catalyst has a triple role, serving simultaneously as a π acid, a transition-metal catalyst and a hydride ion donor, thus enabling the dual function of isocyanide both as a C1 synthon for cyanation and a C1N1 synthon for imidoylation. Significantly, the reaction is the sole successful example for accessing indole-isoindole derivatives, and will open up new avenues to assemble unique N-heterocycle frameworks. Furthermore, the synthetic value of this protocol is demonstrated in the late-stage modification of physiologically active molecules and in the construction of aggregation-induced emission compounds.
Collapse
Affiliation(s)
- Dianpeng Chen
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jianming Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Gongle Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiuhua Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yongwei Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xuan Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xinghai Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yongqin Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yingying Shan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
12
|
Liang Z, Wang L, Wang Y, Wang L, Chong Q, Meng F. Cobalt-Catalyzed Diastereo- and Enantioselective Carbon-Carbon Bond Forming Reactions of Cyclobutenes. J Am Chem Soc 2023; 145:3588-3598. [PMID: 36734874 DOI: 10.1021/jacs.2c12475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Catalytic enantioselective functionalization of cyclobutenes constitutes a general and modular strategy for construction of enantioenriched complex cyclobutanes bearing multiple stereogenic centers, as chiral four-membered rings are common motifs in biologically active molecules and versatile intermediates in organic synthesis. However, enantioselective synthesis of cyclobutanes through such a strategy remained significantly limited. Herein, we report a series of unprecedented cobalt-catalyzed carbon-carbon bond forming reactions of cyclobutenes that are initiated through enantioselective carbometalation. The protocols feature diastereo- and enantioselective introduction of allyl, alkynyl, and functionalized alkyl groups. Mechanistic studies indicated an unusual 1,3-cobalt migration and subsequent β-carbon elimination cascade process occurred in the allyl addition. These new discoveries established a new elementary process for cobalt catalysis and an extension of diversity of nucleophiles for enantioselective transformations of cyclobutenes.
Collapse
Affiliation(s)
- Zhikun Liang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Lei Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Yu Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Lifan Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032.,School of Chemistry and Material Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China, 310024
| |
Collapse
|
13
|
Ano Y, Takahashi D, Yamada Y, Chatani N. Palladium-Catalyzed Skeletal Rearrangement of Cyclobutanones via C–H and C–C Bond Cleavage. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daichi Takahashi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Yamada
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Lin J, Huang Z, Ma J, Xu BH, Zhou YG, Yu Z. Tunable Construction of Multisubstituted 1,3-Dienes and Allenes via a 1,4-Palladium Migration/Carbene Insertion Cascade. J Org Chem 2022; 87:12019-12035. [PMID: 36053185 DOI: 10.1021/acs.joc.2c01019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Efficient palladium-catalyzed vinylic C-H alkenylation and allenylation of gem-disubstituted ethylenes with N-tosylhydrazones of aryl alkyl and diaryl ketones were achieved to access trisubstituted 1,3-dienes and tetrasubstituted allenes, respectively. An aryl to vinyl 1,4-palladium migration/carbene insertion/β-hydride elimination sequence proceeded to switch the chemo- and regioselectivities to give structurally diverse products. Use of 2-FC6H4OH additive enables enhancement of the reaction efficiency through accelerating the key 1,4-palladium migration process.
Collapse
Affiliation(s)
- Jie Lin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zilong Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bao-Hua Xu
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
15
|
Li MY, Wei D, Feng CG, Lin GQ. Tandem Reactions involving 1,4-Palladium Migrations. Chem Asian J 2022; 17:e202200456. [PMID: 35661425 DOI: 10.1002/asia.202200456] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Indexed: 11/08/2022]
Abstract
Transition-metal-catalyzed tandem reactions have become a mainstay in organic chemistry owing to their high atom- and step-economies. Metal-migration-based tandem reactions allow the engagement of simple starting materials for incorporating functional groups into certain positions and constructing complex scaffolds, which provide novel means that are complementary to traditional cross-coupling or C-H activation processes. In light of the broad utility of the 1,4-Pd migration reaction, this paper reviews its progress in the past two decades, summarizing the tandem process and classifying it based on insertion, elimination, transmetalation, and C-H bond activation. Special emphasis is placed on the driving force of Pd migration and different migration mechanisms. Moreover, this review also attempts to summarize common strategies for improving the regio- and site-selectivities of the migration process.
Collapse
Affiliation(s)
- Meng-Yao Li
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai, 200032, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Dong Wei
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai, 200032, P. R. China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 1665 Kongjiang Road, Shanghai, 200092, P. R. China
| | - Chen-Guo Feng
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai, 200032, P. R. China
| | - Guo-Qiang Lin
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai, 200032, P. R. China
| |
Collapse
|
16
|
Meng H, Bai S, Qiao Y, He T, Li W, Ming J. Rhodium-Catalyzed Three-Component Reaction of Alkynes, Arylzinc Chlorides, and Iodomethanes Producing Trisubstituted/Tetrasubstituted Alkenes with/without 1,4-Migration. Org Lett 2022; 24:5480-5485. [PMID: 35856848 DOI: 10.1021/acs.orglett.2c02299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A three-component reaction of alkynes, arylzinc chlorides, and iodomethanes was found to proceed in the presence of a rhodium catalyst to give high yields of trisubstituted/tetrasubstituted alkenes. The usual arylzinc chlorides only gave trisubstituted alkenes, generated through a migratory carbozincation-cross-coupling sequence, where 1,4-Rh migration from an alkenyl carbon to an aryl carbon occurred. In contrast, 5-membered heteroarylzinc chlorides only gave the tetrasubstituted alkenes via a carborhodation-cross-coupling pathway without 1,4-migration.
Collapse
Affiliation(s)
- He Meng
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Shiming Bai
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Yu Qiao
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| | - Ting He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Road South, Chengdu 610041, China
| | - Weiyi Li
- School of Science, Xihua University, Chengdu 610039, China
| | - Jialin Ming
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot 010021, China
| |
Collapse
|
17
|
Rhodium-catalyzed synthesis of 1-silabenzonorbornenes via 1,4-rhodium migration. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Liu L, Doucet H. One Pot Access to 2'‐Aryl‐2,3'‐Bithiophenes via Twofold Palladium‐Catalyzed C‐X/C‐H Coupling Associated to a Pd‐1,4‐Migration. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Yang Y, Spyrou B, White JM, Canty AJ, Donnelly PS, O’Hair RAJ. Palladium-Mediated CO 2 Extrusion Followed by Insertion of Allenes: Translating Mechanistic Studies to Develop a One-Pot Method for the Synthesis of Alkenes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Yang
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria 3010, Australia
| | - Benjamin Spyrou
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria 3010, Australia
| | - Jonathan M. White
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria 3010, Australia
| | - Allan J. Canty
- School of Physical Sciences─Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Paul S. Donnelly
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria 3010, Australia
| | - Richard A. J. O’Hair
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
20
|
Chen Y, Bao G, Zhan X, Fu J, Ji X, Zhang S, Feng C. Highly Stereoselective Synthesis of 2,
2‐Disubstituted
Vinylphosphonates via Aryl to Vinyl 1,
4‐Palladium
Migration. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yan‐Zhen Chen
- Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Geng‐Yu Bao
- Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Xin‐Chen Zhan
- Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Jian‐Guo Fu
- Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Xiao‐Ming Ji
- Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Shu‐Sheng Zhang
- Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Chen‐Guo Feng
- Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| |
Collapse
|
21
|
Ji XM, Chen YZ, Fu JG, Zhang SS, Feng CG. Phosphorylation of C(sp 3)-H Bonds via 1,4-Palladium Migration. Org Lett 2022; 24:3781-3785. [PMID: 35593884 DOI: 10.1021/acs.orglett.2c01303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1,4-Palladium migration has emerged as a reliable method for directed C-H functionalization. In contrast to coupling with carbon nucleophiles, limited examples with heteroatom nucleophiles have been reported. Herein we report a palladium-catalyzed intermolecular C(sp3)-H phosphorylation reaction via 1,4-palladium migration, which is often difficult because of the strong coordination of phosphorus reagents to palladium catalysts. Phosphorylation of C(sp3)-H bonds is accomplished in good reaction yields with excellent regioselectivity. The judicious selection of the phosphine ligand proved to be the key to the success of this cascade process.
Collapse
Affiliation(s)
- Xiao-Ming Ji
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan-Zhen Chen
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian-Guo Fu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shu-Sheng Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
22
|
Chen S, Van der Eycken EV, Sharma UK. Remote Alkenylation
via
Carbopalladation/1,4‐Palladium Migration/Heck Reaction Sequence with Unactivated Alkenyl Alcohols. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Su Chen
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya street 6 RU-117198 Moscow Russia
| | - Upendra K. Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
23
|
Liu J, Yu Y, Huang X. Selective Access of Deuterated Dibenzo‐Fused ε‐Lactones and ε‐Lactams via Palladium Carbene Migratory Insertion Enabled 1,4‐Pd Shift. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jinling Liu
- FIRSM: Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter Fujian Institute of Research on the Structure of Matter CHINA
| | - Yinghua Yu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter Fujian Institute of Research on the Structure of Matter CHINA
| | - Xueliang Huang
- Hunan Normal University - Erliban Campus: Hunan Normal University College of Chemistry and Chemical Engineerring Lushan Road 36Yuelu district 410081 Changsha CHINA
| |
Collapse
|
24
|
Chi X, Xia T, Yang Y, Cao T, Zhang D, Liu H. Highly Diastereoselective Synthesis of Octahydro-1H-cyclpenta[c]pyridine Skeleton via Pd/Au-Relay Catalyzed Cascade Reaction of (Z)-1-Iodo-1,6-diene and Alkyne. Org Chem Front 2022. [DOI: 10.1039/d2qo00233g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Octahydro-1H-cyclopenta[c]pyridine Skeletons exist in a broad spectrum of bioactive natural products, and the development of efficient and convenient protocols to construct this skeleton remains a challenging task. Herein, we...
Collapse
|
25
|
Cheng C, Zhu Q, Zhang Y. Intermolecular C-H silylation through cascade carbopalladation and vinylic to aryl 1,4-palladium migration. Chem Commun (Camb) 2021; 57:9700-9703. [PMID: 34555133 DOI: 10.1039/d1cc03677g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A palladium-catalyzed remote C-H silylation reaction has been developed through vinylic to aryl 1,4-palladium migration. By using alkyne-tethered aryl iodides as the starting materials and hexamethyldisilane as the silylating reagent, the reaction involves cascade intramolecular carbopalladation, 1,4-palladium migration, and silylation with hexamethyldisilane, and leads to the formation of exocyclic alkene-containing 5-silylisoquinolines as the final products.
Collapse
Affiliation(s)
- Cang Cheng
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Qiongqiong Zhu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
26
|
Iwata T, Kumagai S, Yoshinaga T, Hanada M, Shiota Y, Yoshizawa K, Shindo M. Quadruple Role of Pd Catalyst in Domino Reaction Involving Aryl to Alkyl 1,5-Pd Migration to Access 1,9-Bridged Triptycenes. Chemistry 2021; 27:11548-11553. [PMID: 34125459 DOI: 10.1002/chem.202101728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Indexed: 12/21/2022]
Abstract
A Pd-catalyzed domino reaction of 1,8,13-tribromo-9-methoxytriptycenes is reported. Under conventional Suzuki coupling conditions, the triptycenes underwent multiple transformations to give 1,9-bridged triptycenes. Based on mechanistic investigations, a single Pd catalyst functions as Pd0 , PdII and PdIV species to catalyze four distinct processes: (1) aryl to alkyl 1,5-Pd migration, (2) intramolecular arylation, (3) homocoupling of phenylboronic acid and (4) Suzuki coupling. DFT calculations revealed that 1,5-Pd migration likely proceeds via both concerted PdII and stepwise PdIV routes. Asymmetric synthesis of the chiral triptycenes, as well as optical resolution, and further transformation are also reported.
Collapse
Affiliation(s)
- Takayuki Iwata
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, 816-8580, Japan
| | - Satoru Kumagai
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, 816-8580, Japan
| | - Tatsuro Yoshinaga
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, 816-8580, Japan
| | - Masato Hanada
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, 816-8580, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, 816-8580, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, 816-8580, Japan
| | - Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, 816-8580, Japan
| |
Collapse
|
27
|
Goikuria U, Larrañaga A, Lizundia E, Vilas JL. Effect of metal‐oxide nanoparticle presence and alginate cross‐linking on cellulose nanocrystal‐based aerogels. J Appl Polym Sci 2021. [DOI: 10.1002/app.50639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Uribarri Goikuria
- Macromolecular Chemistry Research Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Leioa Spain
| | - Aitor Larrañaga
- SGIker, General Research Services University of the Basque Country (UPV/EHU) Leioa Spain
| | - Erlantz Lizundia
- Department of Graphic Design and Engineering Projects, Bilbao Faculty of Engineering University of the Basque Country (UPV/EHU) Bilbao Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures UPV/EHU Science Park Leioa Spain
| | - José Luis Vilas
- Macromolecular Chemistry Research Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Leioa Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures UPV/EHU Science Park Leioa Spain
| |
Collapse
|
28
|
Xin L, Wan W, Yu Y, Wan Q, Ma L, Huang X. Construction of Protoberberine Alkaloid Core through Palladium Carbene Bridging C–H Bond Functionalization and Pyridine Dearomatization. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Luoting Xin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Wan Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yinghua Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Qiuling Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Liyao Ma
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|