1
|
He W, Zheng WF, Qian H. Rh-Catalyzed Carbonylative Cyclization of Propargylic Alcohols with Aryl Boronic Acids. Org Lett 2024; 26:6279-6283. [PMID: 39023295 DOI: 10.1021/acs.orglett.4c02364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
2(3H)-Furanones are tremendously important not only because of their wide occurrence in bioactive compounds but also due to their versatility in organic synthesis. Here, a straightforward approach to 2(3H)-furanones from readily available tertiary propargylic alcohols with arylboronic acids in the presence of CO using rhodium as a catalyst has been established. The method exhibits a broad substrate scope tolerating useful functional groups with a moderate to high stereoselectivity.
Collapse
Affiliation(s)
- Wenxiang He
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Wei-Feng Zheng
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| |
Collapse
|
2
|
Zheng JY, Wang F, Zhang Y, Zheng Z, Wu JH, Ren X, Su Z, Chen W, Wang T. Novel Stereo-Induction Pattern in Pudovik Addition/Phospha-Brook Rearrangement Towards Chiral Trisubstituted Allenes. Angew Chem Int Ed Engl 2024; 63:e202403707. [PMID: 38520267 DOI: 10.1002/anie.202403707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/25/2024]
Abstract
Despite the significance of chiral allene skeletons in catalysis, organic synthesis and medicinal chemistry et al., there is a scarcity of reports on axially chiral allenyl phosphorus compounds. Here, we disclosed an efficient and straightforward cascade reaction between ethynyl ketones and phosphine oxides, resulting in a broad array of trisubstituted allenes incorporating a phosphorus moiety in high yields with excellent stereoselectivities facilitated by peptide-mimic phosphonium salt (PPS) catalysis, Additionally, comprehensive series of mechanistic experiments have been conducted to elucidate that this cascade reaction proceeds via an asymmetric Pudovik addition reaction followed by a subsequent phospha-Brook rearrangement that occurs concomitantly with kinetic resolution, representing a stereospecific rearrangement and protonation process facilitating central-to-axial chirality transfer in a cascade manner. We anticipate that our research will pave the way for a promising exploration of novel stereo-induction pattern in the Pudovik addition/phospha-Brook rearrangement cascade reaction.
Collapse
Affiliation(s)
- Jia-Yan Zheng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Fan Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yan Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology and Jinjiang Out-patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jia-Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology and Jinjiang Out-patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
3
|
An H, Liu S, Wang SJ, Yu X, Shi C, Lin H, Poh SB, Yang H, Wong MW, Zhao Y, Tu Z, Lu S. Kinetic Resolution of Acyclic Tertiary Propargylic Alcohols by NHC-Catalyzed Enantioselective Acylation. Org Lett 2024; 26:702-707. [PMID: 38206074 DOI: 10.1021/acs.orglett.3c04134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
We report herein an efficient NHC-catalyzed kinetic resolution of acyclic tertiary propargylic alcohols that provides them in high to excellent enantioselectivity. This is the first example of kinetic resolution realized by enantioselective acylation. The recovered enantioenriched alcohols can be facilely converted into other valuable compounds such as densely functionalized tertiary alcohols and carbmates in high yields and excellent stereopurity. Density functional theory calculations were performed to determine the reaction mechanism and to understand the origin of enantiodiscrimination.
Collapse
Affiliation(s)
- Hao An
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Shifei Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Shao-Jie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Xiaoyi Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Chenqi Shi
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Haonan Lin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Si Bei Poh
- Department of Chemistry, National University of Singapore, 3 Science Drive, Republic of Singapore 117543
| | - Hui Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive, Republic of Singapore 117543
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive, Republic of Singapore 117543
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive, Republic of Singapore 117543
| | - Zhifeng Tu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Shenci Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
4
|
Wang J, Zheng WF, Zhang X, Qian H, Ma S. Stereoselectivity control in Rh-catalyzed β-OH elimination for chiral allene formation. Nat Commun 2023; 14:7399. [PMID: 37968338 PMCID: PMC10651921 DOI: 10.1038/s41467-023-42660-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/18/2023] [Indexed: 11/17/2023] Open
Abstract
Stereoselectivity control and understanding in the metal-catalyzed reactions are fundamental issues in catalysis. Here we report sterically controlled rhodium-catalyzed SN2'-type substitution reactions of optically active tertiary propargylic alcohols with arylmetallic species affording the non-readily available enantioenriched tetrasubstituted allenes via either exclusive syn- or anti-β-OH elimination, respectively, under two sets of different reaction parameters. Detailed mechanistic experiments and density functional theory (DFT) studies reveal that the exclusive anti-Rh(I)-OH elimination is dictated by the simultaneous aid of in situ generated boric acid and ambient water, which act as the shuttle in the hydroxy relay to facilitate the Rh(I)-OH elimination process via a unique ten-membered cyclic transition state (anti-TS2_u). By contrast, the syn-Rh(III)-OH elimination in C-H bond activation-based allenylation reaction is controlled by a four-membered cyclic transition state (syn-TS3) due to the steric surroundings around the Rh(III) center preventing the approach of the other assisting molecules. Under the guidance of these mechanistic understandings, a stereodivergent protocol to construct the enantiomer of optically active tetrasubstituted allenes from the same starting materials is successfully developed.
Collapse
Affiliation(s)
- Jie Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, Shanghai, 200433, PR China
| | - Wei-Feng Zheng
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, Shanghai, 200433, PR China
| | - Xue Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, PR China.
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, Shanghai, 200433, PR China.
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, Shanghai, 200433, PR China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, PR China.
| |
Collapse
|
5
|
Unexpected Decarbonylation of Acylethynylpyrroles under the Action of Cyanomethyl Carbanion: A Robust Access to Ethynylpyrroles. Molecules 2023; 28:molecules28031389. [PMID: 36771055 PMCID: PMC9919934 DOI: 10.3390/molecules28031389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
It has been found that the addition of CH2CN- anion to the carbonyl group of acylethynylpyrroles, generated from acetonitrile and t-BuOK, results in the formation of acetylenic alcohols, which undergo unexpectedly easy (room temperature) decomposition to ethynylpyrroles and cyanomethylphenylketones (retro-Favorsky reaction). This finding allows a robust synthesis of ethynylpyrroles in up to 95% yields to be developed. Since acylethynylpyrroles became available, the strategy thus found makes ethynylpyrroles more accessible than earlier. The quantum-chemical calculations (B2PLYP/6-311G**//B3LYP/6-311G**+C-PCM/acetonitrile) confirm the thermodynamic preference of the decomposition of the intermediate acetylenic alcohols to free ethynylpyrroles rather than their potassium derivatives.
Collapse
|
6
|
Zhang J, Chang X, Xu X, Wang H, Peng L, Guo C. Nickel-catalyzed switchable 1,3-dienylation and enantioselective allenylation of phosphine oxides. Nat Commun 2022; 13:7049. [PMID: 36396661 PMCID: PMC9671958 DOI: 10.1038/s41467-022-34764-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
The development of general catalytic methods for the regio- and stereoselective construction of phosphoryl derivatives from identical substrates remains a formidable challenge in organic synthesis. Enabled by the newly developed BDPP-type ligands, we disclosed a nickel-catalyzed allenylation of phosphine oxides rationally and predictably, allowing the construction of versatile chiral allenylphosphoryl derivatives with high enantiopurity (up to 94% e.e.). Alternatively, using an achiral phosphine ligand dcypbz under acidic conditions, we achieved a regiochemical switch of the 1,3-dienylation to afford functionalized phosphinoyl 1,3-butadienes (up to 93% yield). The salient features of this method include switchable reactivity, broad substrate scope, readily available feedstock, single-step preparation, and high asymmetric induction.
Collapse
Affiliation(s)
- Jiayin Zhang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Xihao Chang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Xianghong Xu
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Hongyi Wang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Lingzi Peng
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Chang Guo
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| |
Collapse
|
7
|
Wang H, Qian H, Zhang J, Ma S. Catalytic Asymmetric Axially Chiral Allenyl C-P Bond Formation. J Am Chem Soc 2022; 144:12619-12626. [PMID: 35802534 DOI: 10.1021/jacs.2c04931] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chiral organophosphorous compounds are very important in catalysis, organic syntheses, and medicinal chemistry. However, catalytic enantioselective protocols for the axially chiral allenyl phosphorus compounds have never been reported. Herein, a palladium-catalyzed enantioselective carbon-phosphorus bond formation reaction affording axially chiral allenyl phosphonates has been developed. The reaction enjoys high yields and ees accommodating a wide range of functional groups. Mechanistic studies have unveiled an overwhelming kinetic resolution process.
Collapse
Affiliation(s)
- Huanan Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Junliang Zhang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
8
|
Sang X, Tong F, Zeng Z, Wu M, Yuan B, Sun Z, Sheng X, Qu G, Alcalde M, Hollmann F, Zhang W. A Biocatalytic Platform for the Synthesis of Enantiopure Propargylic Alcohols and Amines. Org Lett 2022; 24:4252-4257. [PMID: 35670732 PMCID: PMC9208015 DOI: 10.1021/acs.orglett.2c01547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Propargylic alcohols
and amines are versatile building blocks in
organic synthesis. We demonstrate a straightforward enzymatic cascade
to synthesize enantiomerically pure propargylic alcohols and amines
from readily available racemic starting materials. In the first step,
the peroxygenase from Agrocybe aegerita converted
the racemic propargylic alcohols into the corresponding ketones, which
then were converted into the enantiomerically pure alcohols using
the (R)-selective alcohol dehydrogenase from Lactobacillus kefir or the (S)-selective
alcohol dehydrogenase from Thermoanaerobacter brokii. Moreover, an enzymatic Mitsunobu-type conversion of the racemic
alcohols into enantiomerically enriched propargylic amines using (R)-selective amine transaminase from Aspergillus
terreus or (S)-selective amine transaminase
from Chromobacterium violaceum was established. The
one-pot two-step cascade reaction yielded a broad range of enantioenriched
alcohol and amine products in 70–99% yield.
Collapse
Affiliation(s)
- Xianke Sang
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, Hubei 437100, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin 300308, China
| | - Feifei Tong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin 300308, China
| | - Zhigang Zeng
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, Hubei 437100, China
| | - Minghu Wu
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, Hubei 437100, China
| | - Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin 300308, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin 300308, China
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin 300308, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin 300308, China
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin 300308, China
| |
Collapse
|
9
|
Ding B, Xue Q, Cheng HG, Zhou Q, Jia S. Recent Advances in Catalytic Nonenzymatic Kinetic Resolution of Tertiary Alcohols. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1712-0912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractThe kinetic resolution (KR) of racemates is one of the most widely used approaches to access enantiomerically pure compounds. Over the past two decades, catalytic nonenzymatic KR has gained popularity in the field of asymmetric synthesis due to the rapid development of chiral catalysts and ligands in asymmetric catalysis. Chiral tertiary alcohols are prevalent in a variety of natural products, pharmaceuticals, and biologically active chiral compounds. The catalytic nonenzymatic KR of racemic tertiary alcohols is a straightforward strategy to access enantioenriched tertiary alcohols. This short review describes recent advances in catalytic nonenzymatic KR of tertiary alcohols, including organocatalysis and metal catalysis.1 Introduction2 Organocatalysis2.1 Peptide Catalyst2.2 Chiral Phosphoric Acid Catalyst2.3 Chiral Lewis Base Catalyst2.4 Chiral Quaternary Ammonium Salt Catalyst3 Metal Catalysis3.1 Mixed La-Li Heterobimetallic Catalyst3.2 Rh Catalyst3.3 Hf Catalyst3.4 Pd Catalyst3.5 Cu Catalyst3.6 Ag Catalyst4 Conclusion and Outlook
Collapse
Affiliation(s)
- Bo Ding
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University
| | - Qilin Xue
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University
| | - Hong-Gang Cheng
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University
| | - Qianghui Zhou
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University
- The Institute for Advanced Studies, Wuhan University
| | - Shihu Jia
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University
| |
Collapse
|
10
|
Chen Y, Liu W, Yang X. Recent Advances in Kinetic Resolution of Tertiary Alcohols. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|