1
|
Huang W, Wang S, Li M, Zhao L, Peng M, Kang C, Jiang G, Ji F. Electrochemical N-Acylation of Sulfoximine with Hydroxamic Acid. J Org Chem 2023. [PMID: 38018775 DOI: 10.1021/acs.joc.3c01903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Despite the widespread applications of sulfoximines, green and efficient access to functionalized sulfoximines remains a challenge. By employing an electrochemical strategy, we describe an approach for the construction of N-aroylsulfoximines, which features a broad substrate scope, mild reaction conditions, safety on a gram scale, and no need for an external oxidant and transition metal catalysts.
Collapse
Affiliation(s)
- Wenxiu Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Mingzhe Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Longqiang Zhao
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Mengyu Peng
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Chen Kang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
2
|
Bartalucci E, Schumacher C, Hendrickx L, Puccetti F, d'Anciães Almeida Silva I, Dervişoğlu R, Puttreddy R, Bolm C, Wiegand T. Disentangling the Effect of Pressure and Mixing on a Mechanochemical Bromination Reaction by Solid-State NMR Spectroscopy. Chemistry 2023; 29:e202203466. [PMID: 36445819 DOI: 10.1002/chem.202203466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Mechanical forces, including compressive stresses, have a significant impact on chemical reactions. Besides the preparative opportunities, mechanochemical conditions benefit from the absence of any organic solvent, the possibility of a significant synthetic acceleration and unique reaction pathways. Together with an accurate characterization of ball-milling products, the development of a deeper mechanistic understanding of the occurring transformations at a molecular level is critical for fully grasping the potential of organic mechanosynthesis. We herein studied a bromination of a cyclic sulfoximine in a mixer mill and used solid-state nuclear magnetic resonance (NMR) spectroscopy for structural characterization of the reaction products. Magic-angle spinning (MAS) was applied for elucidating the product mixtures taken from the milling jar without introducing any further post-processing on the sample. Ex situ 13 C-detected NMR spectra of ball-milling products showed the formation of a crystalline solid phase with the regioselective bromination of the S-aryl group of the heterocycle in position 4. Completion is reached in less than 30 minutes as deduced from the NMR spectra. The bromination can also be achieved by magnetic stirring, but then, a longer reaction time is required. Mixing the solid educts in the NMR rotor allows to get in situ insights into the reaction and enables the detection of a reaction intermediate. The pressure alone induced in the rotor by MAS is not sufficient to lead to full conversion and the reaction occurs on slower time scales than in the ball mill, which is crucial for analysing mixtures taken from the milling jar by solid-state NMR. Our data suggest that on top of centrifugal forces, an efficient mixing of the starting materials is required for reaching a complete reaction.
Collapse
Affiliation(s)
- Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Christian Schumacher
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Leeroy Hendrickx
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Francesco Puccetti
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | | | - Rıza Dervişoğlu
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Rakesh Puttreddy
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany.,University of Jyvaskyla, Department of Chemistry P. O. Box. 35, Survontie 9B, 40014, Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
3
|
Amer MM, Hommelsheim R, Schumacher C, Kong D, Bolm C. Electro-mechanochemical approach towards the chloro sulfoximidations of allenes under solvent-free conditions in a ball mill. Faraday Discuss 2023; 241:79-90. [PMID: 36128995 DOI: 10.1039/d2fd00075j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An electro-mechanochemical protocol for the synthesis of vinylic sulfoximines has been developed. Utilising mechanochemically strained BaTiO3 nanoparticles, the catalytic active system is generated in situ by the reduction of copper(II) chloride. Various combinations of electron-donating and -withdrawing groups are tolerated, and the approach leads to products with difunctionalised double bonds in good to excellent yields. Attempts to add a sulfoximidoyl chloride to an alkyne proved difficult. Additions of a sulfonyl iodide to allenes and alkynes proceeded smoothly in the presence of silica gel without the need for activation by a piezoelectric material.
Collapse
Affiliation(s)
- Mostafa M Amer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany. .,Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Renè Hommelsheim
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
| | - Christian Schumacher
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
| | - Deshen Kong
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany.
| |
Collapse
|
4
|
Friesen CM, Kelley AR, Iacono ST. Shaken Not Stirred: Perfluoropyridine-Polyalkylether Prepolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chadron M. Friesen
- Department of Chemistry, Trinity Western University, 22500 University Drive, Langley, British Columbia V2Y 1Y1, Canada
| | - Andrea R. Kelley
- Department of Chemistry, United States Air Force Academy, Colorado Springs, Colorado 80840, United States of America
| | - Scott T. Iacono
- Department of Chemistry and Chemistry Research Center, Laboratories for Advanced Materials, United States Air Force Academy, Colorado Springs, Colorado 80840, United States of America
| |
Collapse
|
5
|
Proietti G, Kuzmin J, Temerdashev AZ, Dinér P. Accessing Perfluoroaryl Sulfonimidamides and Sulfoximines via Photogenerated Perfluoroaryl Nitrenes: Synthesis and Application as a Chiral Auxiliary. J Org Chem 2021; 86:17119-17128. [PMID: 34766772 PMCID: PMC8650101 DOI: 10.1021/acs.joc.1c02241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Sulfonimidamides
(SIAs) and sulfoximines (SOIs) have attracted
attention due to their potential in agriculture and in medicinal chemistry
as bioisosteres of biologically active compounds, and new synthetic
methods are needed to access and explore these compounds. Herein,
we present a light-promoted generation of perfluorinated aromatic
nitrenes, from perfluorinated azides, that subsequently are allowed
to react with sulfinamides and sulfoxides, generating achiral and
chiral SIAs and SOIs. One of the enantiopure SIAs was evaluated as
a novel chiral auxiliary in Grignard additions to the imines yielding
the product in up to 96:4 diastereomeric ratio.
Collapse
Affiliation(s)
- Giampiero Proietti
- Division of Organic Chemistry, Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, 10044 Stockholm, Sweden
| | - Julius Kuzmin
- Division of Organic Chemistry, Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, 10044 Stockholm, Sweden
| | - Azamat Z Temerdashev
- Department of Analytical Chemistry, Kuban State University, Stavropolskaya St. 149, 350040 Krasnodar, Russia
| | - Peter Dinér
- Division of Organic Chemistry, Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, 10044 Stockholm, Sweden
| |
Collapse
|
6
|
Tu Y, Zhang D, Shi P, Wang C, Ma D, Bolm C. Visible light-induced C-C bond cleavage in a multicomponent reaction cascade allowing acylations of sulfoximines with ketones. Org Biomol Chem 2021; 19:8096-8101. [PMID: 34487133 DOI: 10.1039/d1ob01411k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible light induces C-C-bond cleavage reactions of ketones, which can be utilized for N-acylations of sulfoximines. No (photo)catalyst is required, and the reactions occur at ambient temperature in air. The substrate scope is broad for both ketones and sulfoximines. For converting NH-sulfoximines, the presence of NBS is essential.
Collapse
Affiliation(s)
- Yongliang Tu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | - Duo Zhang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | - Peng Shi
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | - Chenyang Wang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | - Ding Ma
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| |
Collapse
|
7
|
Brittain WDG, Cobb SL. Carboxylic Acid Deoxyfluorination and One-Pot Amide Bond Formation Using Pentafluoropyridine (PFP). Org Lett 2021; 23:5793-5798. [PMID: 34251217 PMCID: PMC8397423 DOI: 10.1021/acs.orglett.1c01953] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This work describes the application of pentafluoropyridine (PFP), a cheap commercially available reagent, in the deoxyfluorination of carboxylic acids to acyl fluorides. The acyl fluorides can be formed from a range of acids under mild conditions. We also demonstrate that PFP can be utilized in a one-pot amide bond formation via in situ generation of acyl fluorides. This one-pot deoxyfluorination amide bond-forming reaction gives ready access to amides in yields of ≤94%.
Collapse
Affiliation(s)
- William D G Brittain
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Steven L Cobb
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|