1
|
Sheng X, Yang L, Han JY, Yu X, Cui HL. CuI-Catalyzed Dearomatization/Peroxidation/Cyclization Cascade of Pyrrole-Tethered Indoles. J Org Chem 2025; 90:3639-3652. [PMID: 40014766 DOI: 10.1021/acs.joc.4c02977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A mild CuI-catalyzed dearomatization/peroxidation/cyclization cascade of pyrrole-tethered indoles has been reached, providing peroxide-incorporated indolizino[8,7-b]indole derivatives in acceptable to good yields (46-76%). Dehydrogenated peroxide can be obtained by the use of a FeCl3/TBHP (tBuOOH)/2,2,2-trifluoroethanol (TFE) system at 50 °C.
Collapse
Affiliation(s)
- Xue Sheng
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Liu Yang
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Jia-Yi Han
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Xin Yu
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| |
Collapse
|
2
|
Wu H, Chen K, Liu Y, Wan JP. Unlock the C-N Bond Amidation of Enaminones: Metal-Free Synthesis of Enamides by Water-Assisted Transamidation. J Org Chem 2024; 89:216-223. [PMID: 38109677 DOI: 10.1021/acs.joc.3c01926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The C-N bond transamidation of primary amides with N,N-dimethyl enaminones has been efficiently realized by heating in the presence of trifluoromethanesulfonic acid (TfOH). The method enables the practical synthesis of valuable enamides without the use of any metal reagent. In addition, this transamidation protocol can also be expanded to the reactions of sulfonamides, and the late-stage functionalization on sulfonamide drugs such as Celecoxib and Valdecoxib has been verified. Moreover, the participation of water in assisting the transamidation process has been identified by the isotope labeling experiments using D2O, disclosing a new possibility in designing catalytic tactic to other transamidation reactions.
Collapse
Affiliation(s)
- Haozhi Wu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Kang Chen
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Zhuang QB, Tian JR, Lu K, Zhang XM, Zhang FM, Tu YQ, Fan R, Li ZH, Zhang YD. Catalytic Asymmetric Polycyclization of Tertiary Enamides with Silyl Enol Ethers: Total Synthesis of (-)-Cephalocyclidin A. J Am Chem Soc 2023. [PMID: 38019148 DOI: 10.1021/jacs.3c11178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
A catalytic enantioselective polycyclization of tertiary enamides with terminal silyl enol ethers has been developed by virtue of Cu(OTf)2 catalysis with a novel spiropyrroline-derived oxazole (SPDO) ligand. This tandem reaction offers an effective approach to assemble bicyclic and tricyclic N-heterocycles bearing both aza- and oxa-quaternary stereogenic centers, which are primal subunits in a range of natural alkaloids. Strategic application of this methodology and a late-stage radical cyclization as key steps have been showcased in the concise total synthesis of (-)-cephalocyclidin A.
Collapse
Affiliation(s)
- Qing-Bo Zhuang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jin-Rui Tian
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ka Lu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai Key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai Minhang 200240, China
| | - Rong Fan
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Hao Li
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yu-Dong Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Ma YR, Lv XJ, Dong Q, Ming YC, Liu YK. Brønsted-Acid-Catalyzed In Situ Formation of Acyclic Tertiary Enamides and Its Application to the Preparation of Diverse Nitrogen-Containing Heterocyclic Compounds. Org Lett 2023; 25:5929-5934. [PMID: 37560944 DOI: 10.1021/acs.orglett.3c01919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
A Brønsted acid-catalyzed cascade process, involving in situ formation of acyclic tertiary enamides and intramolecular Michael reaction, is developed for the synthesis of functionalized cyclic tertiary enamides. Based on the dual reactivities of the enamide moiety, several reaction sequences were realized by using rationally designed substrates, leading to biologically relevant nitrogen-containing heterocyclic compounds with diverse structural skeletons in a concise and diastereocontrolled manner.
Collapse
Affiliation(s)
- Yuan-Ren Ma
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xue-Jiao Lv
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qing Dong
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yong-Chao Ming
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yan-Kai Liu
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
5
|
Xu XM, Shi R, Li W, Zhang X, Chen S, Wang ZL, Wang X. One-Pot Synthesis of Diverse Isoindolobenzoxazinone and Isoindoloquinazolinone Derivatives through a Transition Metal-Free Cascade Cyclization. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Xi S, Jiang Y, Yang J, Yang J, Miao D, Chen B, Huang W, He L, Qiu H, Zhang M. Generation and [2,3]-Sigmatropic Rearrangement of Ammonium Ylides from Cyclopropyl Ketones for Chiral Indolizidines with Bridgehead Quaternary Stereocenters. Org Lett 2022; 24:6957-6961. [DOI: 10.1021/acs.orglett.2c02759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Song Xi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yan Jiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jiaojiao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jiao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Dingyin Miao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Baoyi Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Wanqiu Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Hanyue Qiu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
7
|
Li W, Shi R, Zhang X, Chen S, Wang Y, Wang M, Yang B, Li J, Xu XM. Different Lewis Acid Promotor-Steered Highly Regioselective Phosphorylation of Tertiary Enamides. J Org Chem 2022; 87:9769-9781. [PMID: 35866754 DOI: 10.1021/acs.joc.2c00829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Different Lewis acid promotor-steered highly regioselective phosphorylation of tertiary enamides with diverse H-phosphonates or H-phosphine oxides was developed. Under the catalysis of iron salt, the phosphonyl group was introduced into the α-position of tertiary enamides, affording various α-phosphorylated amides in high efficiency. On the other hand, the β-phosphorylated tertiary enamides were efficiently obtained as the products in the presence of manganese(III) acetylacetonate.
Collapse
Affiliation(s)
- Wenzhong Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Ran Shi
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xuesi Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Sen Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yu Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Mengqi Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Bin Yang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jiazhu Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xin-Ming Xu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
8
|
Xu XM, Li W, Li Q, Chen S, Zhang X, Yang B, Wang WL. Manganese(III)-promoted highly stereoselective phosphorylation of acyclic tertiary enamides to synthesize E-selective β-phosphoryl enamides. Org Biomol Chem 2022; 20:5566-5574. [PMID: 35792054 DOI: 10.1039/d2ob00980c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A concise manganese(III)-promoted stereoselective β-phosphorylation of acyclic tertiary enamides and diverse H-phosphine oxides was achieved. This reaction proceeds with absolute E-selectivity in contrast to Z-selectivity obtained in other previous works and affords various E-selective β-phosphorylated tertiary enamides in high efficiency. To the best of our knowledge, this is the first case of E-selective β-phosphorylation of tertiary enamides through C-H functionalization. In addition, the method features broad substrate scope, good functional group compatibility and efficient scale-up.
Collapse
Affiliation(s)
- Xin-Ming Xu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Wenzhong Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Qiwei Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Sen Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Xuesi Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Bin Yang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Wei-Li Wang
- School of Chemistry and Material Science, Ludong University, Yantai 264005, China
| |
Collapse
|
9
|
Li W, Shi R, Chen S, Zhang X, Peng W, Chen S, Li J, Xu XM, Zhu YP, Wang X. Synthesis of Diverse Pentasubstituted Pyrroles by a Gold(I)-Catalyzed Cascade Rearrangement-Cyclization of Tertiary Enamide. J Org Chem 2022; 87:3014-3024. [DOI: 10.1021/acs.joc.1c02837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenzhong Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Ran Shi
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Sen Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xuesi Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wei Peng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Si Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jiazhu Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xin-Ming Xu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yan-Ping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xueyuan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Li W, Wan B, Shi R, Chen S, Li J, Wang F, Niu H, Xu XM, Wang WL. Catalyst-free one-pot cascade cyclization: An efficient synthesis of isoindolobenzoxazinones and isoindoloquinazolinones derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Li W, Wang Y, Qi H, Shi R, Li J, Chen S, Xu XM, Wang WL. Diverse privileged N-polycyclic skeletons accessed from a metal-free cascade cyclization reaction. Org Biomol Chem 2021; 19:8086-8095. [PMID: 34476428 DOI: 10.1039/d1ob01206a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An exquisite metal-free cascade cyclization reaction of 2-acylbenzoic acids with amines was developed, which provided a powerful method for the one-pot synthesis of diverse isoindoloisoquinoline and benzoindolizinoindole derivatives. This protocol avoided the use of metal catalysts, proceeded with high efficiency and had broad substrate scope. These resulting products could be transformed into tertiary amines under the reduction of LiAlH4/AlCl3, followed by the Hofmann elimination offering lots of nitrogen-containing nine-membered ring compounds in excellent yields. All synthesized products containing fused N-polycyclic skeletons were difficult to be constructed using traditional methods and they have a wide range of applications in the pharmaceutical area.
Collapse
Affiliation(s)
- Wenzhong Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Yu Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Huijing Qi
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Ran Shi
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Jiazhu Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Si Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Xin-Ming Xu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Wei-Li Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264005, China
| |
Collapse
|
12
|
Synthesis of diverse 2,3,4,5-tetrahydro-1H-azepine derivatives via sequential Knoevenagel reaction and Michael addition of tertiary enamide. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Abstract
AbstractStudies in recent decade have shown that tertiary enamides, once thought of as unreactive and marginally useful enamine variants, are shelf-stable yet versatile nucleophilic intermediates in organic synthesis. Many compounds, especially N-heterocycles, have been synthesized by monofunctionalization reactions of tertiary enamides. By taking advantage of intramolecular and intermolecular interception of the putative acyliminium intermediates formed by the initial nucleophilic reactions of tertiary enamides, we have established several novel difunctionalization reaction methods for constructing diverse complex fused heterocyclic products. In this Account, we summarize our endeavors to develop difunctionalization reactions of tertiary enamides in a domino fashion.1 Introduction2 Strategic Considerations3 Domino Reactions of Tertiary Enamides3.1 Type I Domino Reactions3.2 Type II Domino Reactions3.3 Type III Domino Reactions4 Conclusion and Perspectives
Collapse
|