1
|
Sun J, Zhang W, Song R, Yang D, Lv J. Divergent Coupling of ortho-Alkynylnaphthols and Benzofurans: [4 + 2] Cycloaddition and Friedel-Crafts Reaction. J Org Chem 2023; 88:442-454. [PMID: 36520642 DOI: 10.1021/acs.joc.2c02431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Catalytic direct [4 + 2] cycloaddition reactions and Friedel-Crafts reactions of ortho-alkynylnaphthols with benzofurans have been developed, affording functionalized hydrobenzofuro[3,2-b]chromans and hydroarylation products, respectively, in high yields with high chemoselectivity.
Collapse
Affiliation(s)
- Jiaying Sun
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Wenxuan Zhang
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Ran Song
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Daoshan Yang
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jian Lv
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
2
|
Ballav N, Dana S, Baidya M. Palladium(II)-Catalyzed Regioselective Hydrocarbofunctionalization of N-Alkenyl Amides: Synthesis of Tryptamine Derivatives. Org Lett 2022; 24:9228-9232. [PMID: 36511853 DOI: 10.1021/acs.orglett.2c03753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hydrocarbofunctionalization of allyl amines connected to the picolinamide directing group is developed under Pd(II) catalysis. The strategy is grounded on a nucleopalladation concept, and a wide range of indoles effectively participated to produce valuable tryptamine derivatives in high yields. Synthetic utilities were showcased through the substrate diversification bearing bioactive core, Pictet-Spengler cyclization, and β-carboline synthesis. A mechanistic study suggested an irreversible nucleopalladation step, while protodepalladation follows a reversible pathway.
Collapse
Affiliation(s)
- Nityananda Ballav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
3
|
Simlandy AK, Rodphon W, Alturaifi TM, Mai BK, Ni HQ, Gurak JA, Liu P, Engle KM. Catalytic Addition of Nitroalkanes to Unactivated Alkenes via Directed Carbopalladation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amit Kumar Simlandy
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Warabhorn Rodphon
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Turki M. Alturaifi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Hui-Qi Ni
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - John A. Gurak
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Keary M. Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
4
|
Liu M, Sun J, Zhang T, Ding Y, Han Y, Martín‐Montero R, Lan Y, Shi B, Engle KM. Regio- and Stereoselective 1,2-Oxyhalogenation of Non-Conjugated Alkynes via Directed Nucleopalladation: Catalytic Access to Tetrasubstituted Alkenes. Angew Chem Int Ed Engl 2022; 61:e202209099. [PMID: 36082442 PMCID: PMC9588632 DOI: 10.1002/anie.202209099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 01/12/2023]
Abstract
A catalytic 1,2-oxyhalogenation method that converts non-conjugated internal alkynes into tetrasubstituted alkenes with high regio- and stereoselectivity is described. Mechanistically, the reaction involves a PdII /PdIV catalytic cycle that begins with a directed oxypalladation step. The origin of regioselectivity is the preference for formation of a six-membered palladacycle intermediate, which is facilitated by an N,N-bidentate 2-(pyridin-2-yl)isopropyl (PIP) amide directing group. Selectivity for C(alkenyl)-X versus -N (X=halide) reductive elimination from the PdIV center depends on the identity of the halide anion; bromide and iodide engage in C(alkenyl)-X formation, while intramolecular C(alkenyl)-N reductive elimination occurs with chloride to furnish a lactam product. DFT calculations shed light on the origins of this phenomenon.
Collapse
Affiliation(s)
- Mingyu Liu
- Department of ChemistryThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA 92037USA
| | - Juntao Sun
- Department of ChemistryThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA 92037USA
| | - Tao Zhang
- Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouHenan450001P. R. China
| | - Yi Ding
- Department of ChemistryZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Ye‐Qiang Han
- Department of ChemistryZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Raúl Martín‐Montero
- Department of ChemistryThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA 92037USA
| | - Yu Lan
- Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouHenan450001P. R. China,School of Chemistry and Chemical EngineeringChongqing Key Laboratory of Theoretical and Computational ChemistryChongqing UniversityChongqing400030P. R. China
| | - Bing‐Feng Shi
- Department of ChemistryZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Keary M. Engle
- Department of ChemistryThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA 92037USA
| |
Collapse
|
5
|
Liu M, Sun J, Zhang T, Ding Y, Han YQ, Martín-Montero R, Lan Y, Shi BF, Engle KM. Regio‐ and Stereoselective 1,2‐Oxyhalogenation of Non‐ Conjugated Alkynes via Directed Nucleopalladation: Catalytic Access to Tetrasubstituted Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingyu Liu
- The Scripps Research Institute Chemistry UNITED STATES
| | - Juntao Sun
- The Scripps Research Institute Chemistry UNITED STATES
| | - Tao Zhang
- Zhengzhou University College of Chemistry CHINA
| | - Yi Ding
- Zhejiang University Chemistry UNITED STATES
| | | | | | - Yu Lan
- Zhengzhou University College of Chemistry CHINA
| | | | - Keary Mark Engle
- The Scripps Research Institute Department of Chemistry 10550 N. Torrey Pines Rd. 92037 La Jolla UNITED STATES
| |
Collapse
|
6
|
Ni HQ, Cooper P, Yang S, Wang F, Sach N, Bedekar PG, Donaldson JS, Tran-Dubé M, McAlpine IJ, Engle KM. Mapping Ambiphile Reactivity Trends in the Anti-(Hetero)annulation of Non-Conjugated Alkenes via Pd II /Pd IV Catalysis. Angew Chem Int Ed Engl 2022; 61:e202114346. [PMID: 35007393 PMCID: PMC8923970 DOI: 10.1002/anie.202114346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 12/14/2022]
Abstract
In this study, we systematically evaluate different ambiphilic organohalides for their ability to participate in anti-selective carbo- or heteroannulation with non-conjugated alkenyl amides under PdII /PdIV catalysis. Detailed optimization of the reaction conditions has led to protocols for synthesizing tetrahydropyridines, tetralins, pyrrolidines, and other carbo/heterocyclic cores via [n+2] (n=3-5) (hetero)annulation. Expansion of scope to otherwise unreactive ambiphilic haloketones through PdII /amine co-catalysis is also demonstrated. Compared to other annulation processes, this method proceeds via a distinct PdII /PdIV mechanism involving Wacker-type directed nucleopalladation. This difference results in unique reactivity and selectivity patterns, as revealed through assessment of reaction scope and competition experiments.
Collapse
Affiliation(s)
- Hui-Qi Ni
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Phillippa Cooper
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shouliang Yang
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Fen Wang
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Neal Sach
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Pranali G Bedekar
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joyann S Donaldson
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Michelle Tran-Dubé
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Indrawan J McAlpine
- Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, CA 92121, USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Zhang W, Song R, Yang D, Lv J. Construction of Axially Chiral Styrenes Linking an Indole Moiety by Chiral Phosphoric Acid. J Org Chem 2022; 87:2853-2863. [DOI: 10.1021/acs.joc.1c02750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wenxuan Zhang
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ran Song
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Daoshan Yang
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Lv
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
8
|
Zhang P, Zeng J, Pan P, Zhang XJ, Yan M. Palladium-Catalyzed Migratory Insertion of Carbenes and C-C Cleavage of Cycloalkanecarboxamides. Org Lett 2022; 24:536-541. [PMID: 35057629 DOI: 10.1021/acs.orglett.1c03952] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium catalyzed reaction of cycloalkanecarboxamides and diazomalonates or bis(phenylsulfonyl)diazomethane has been developed. The reaction proceeds via carbene migratory insertion and cascade C-C cleavage pathways. Cycloalkanecarboxamides with four to seven membered rings are applicable in the transformation. A series of ring opening products were prepared with moderate yields. The finding provides valuable clues for the development of new reactions involving carbene migratory insertion and the cleavage of unstrained C(sp3)-C(sp3) bonds.
Collapse
Affiliation(s)
- Peng Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia Zeng
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ping Pan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
9
|
Ni HQ, Cooper P, Yang S, Wang F, Sach N, Bedekar PG, Donaldson JS, Tran-Dubé M, McAlpine IJ, Engle KM. Mapping Ambiphile Reactivity Trends in the Anti‐(Hetero)annulation of Non‐Conjugated Alkenes via Pd(II)/Pd(IV) Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hui-Qi Ni
- The Scripps Research Institute Chemistry 10550 N. Torrey Pines Rd. 92037 La Jolla UNITED STATES
| | | | - Shouliang Yang
- Pfizer Inc Oncology Medicinal Chemistry 10770 Science Center Drive 92121 San Diego UNITED STATES
| | - Fen Wang
- Pfizer Inc Oncology Medicinal Chemistry UNITED STATES
| | - Neal Sach
- Pfizer Inc Oncology Medicinal Chemistry UNITED STATES
| | | | | | | | | | - Keary Mark Engle
- The Scripps Research Institute Department of Chemistry 10550 N. Torrey Pines Rd. 92037 La Jolla UNITED STATES
| |
Collapse
|
10
|
He Y, Wu P, Zhang X, Wang T, Tao Q, Zhou K, Ouyang Z, Zhai H, Cheng DJ, Cheng B. Synthesis of aryl-fused 1,4-oxathiepines from pyridinium 1,4-zwitterionic thiolates and vinylidene ortho-quinone methides. Org Chem Front 2022. [DOI: 10.1039/d2qo00735e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of aryl-fused 1,4-oxathiepines from pyridinium 1,4-zwitterionic thiolates with vinylidene ortho-quinone methides generated in situ via a formal (3 + 4) pathway.
Collapse
Affiliation(s)
- Yixuan He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Ping Wu
- Key Laboratory of Coordination Chemistry and Functional Materials in Universities of Shandong, Dezhou College, Dezhou 253023, China
| | - Xiang Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Taimin Wang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Qingqing Tao
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Kang Zhou
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Zijun Ouyang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Hongbin Zhai
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Engineering Laboratory of Nano Drug Slow-Release, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Dao-Juan Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Bin Cheng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
11
|
Al-Zoubi RM, Al-Jammal WK, Ferguson MJ, Murphy GK. Domino C-C/C-O bond formation: palladium-catalyzed regioselective synthesis of 7-iodobenzo[ b]furans using 1,2,3-triiodobenzenes and benzylketones. RSC Adv 2021; 11:30069-30077. [PMID: 35493993 PMCID: PMC9040925 DOI: 10.1039/d1ra05730h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 11/21/2022] Open
Abstract
A facile and efficient synthesis of 7-iodobenzo[b]furan derivatives via a highly regioselective tandem α-arylation/intramolecular O-arylation of 5-substituted-1,2,3-triiodobenzenes and benzylketones is described. Remarkably, the α-arylation coupling reactions initiate exclusively at the least sterically-hindered position of the triiodoarene, which results in a highly chemoselective transformation. The highest yields were observed in reactions between electron-poor 1,2,3-triiodoarenes and electron-rich benzylketones, yet the optimized reaction conditions were found to be tolerant to a wide range of different functional groups. This unprecedent synthesis of 7-iodobenzo[b]furans from 1,2,3-triiodobenzenes is scalable, general in scope, and provides easy access to valuable precursors for other chemical transformations.
Collapse
Affiliation(s)
- Raed M Al-Zoubi
- Department of Chemistry, Jordan University of Science and Technology P.O. Box 3030 Irbid 22110 Jordan +962-2-7201071 +962-2-7201000 ext. 23651
| | - Walid K Al-Jammal
- Department of Chemistry, Jordan University of Science and Technology P.O. Box 3030 Irbid 22110 Jordan +962-2-7201071 +962-2-7201000 ext. 23651
| | - Michael J Ferguson
- Department of Chemistry, Gunning-Lemieux Chemistry Centre, University of Alberta Edmonton Alberta T6G2G2 Canada
| | - Graham K Murphy
- Department of Chemistry, University of Waterloo Waterloo Ontario N2L3G1 Canada
| |
Collapse
|
12
|
Ni HQ, Li ZQ, Tran VT, Engle KM. Modular synthesis of non-conjugated N-(quinolin-8-yl) alkenyl amides via cross-metathesis. Tetrahedron 2021; 93:132279. [PMID: 34393281 PMCID: PMC8360400 DOI: 10.1016/j.tet.2021.132279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We report a direct and modular method to access non-conjugated alkenyl amides containing the 8-aminoquinoline (AQ) directing auxiliary and related groups via cross-metathesis. In this way, readily available, AQ-containing, terminal β,γ-unsaturated amides can be coupled with various terminal alkenes to furnish internal alkene products that are otherwise difficult to prepare. The value of this family of products stems from their ability to participate in a number of directed alkene functionalization reactions.
Collapse
Affiliation(s)
- Hui-Qi Ni
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Zi-Qi Li
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Van T Tran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
13
|
Raji Reddy C, Aila M, Subbarao M, Warudikar K, Grée R. Domino Reaction of 2,4-Diyn-1-ols with 1,3-Dicarbonyl Compounds: Direct Access to Aryl/Heteroaryl-Fused Benzofurans and Indoles. Org Lett 2021; 23:4882-4887. [PMID: 34096313 DOI: 10.1021/acs.orglett.1c01615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A domino propargylation/furanylation (intramolecular exo-dig-cyclization)/benzannulation reaction of 2,4-diyn-1-ols with 1,3-dicarbonyl compounds has been developed for the first time. This provides a novel and effective method for the preparation of aryl/heteroaryl-fused benzofurans from easily accessible starting materials in a single step. The methodology was extended to pyrrolyl-benzannulation to obtain aryl/heteroaryl-fused indoles. Further, application of this approach in the synthesis of eustifoline D and dictyodendrin structural frameworks has been demonstrated.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mounika Aila
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muppidi Subbarao
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kamalkishor Warudikar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - René Grée
- Univ Rennes, CNRS (Institut for Chemical Sciences in Rennes), UMR 6226, 35000 Rennes, France
| |
Collapse
|
14
|
Shukla RK, Chaturvedi AK, Volla CMR. Catalytic Cascade Cyclization and Regioselective Hydroheteroarylation of Unactivated Alkenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01234] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rahul K. Shukla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Atul K. Chaturvedi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
15
|
Shukla RK, Chaturvedi AK, Pal S, Volla CMR. Catalytic, Regioselective Hydrocarbofunctionalization of Unactivated Alkenes Triggered by trans-Acetoxypalladation of Alkynes. Org Lett 2021; 23:1440-1444. [DOI: 10.1021/acs.orglett.1c00118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rahul K. Shukla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Atul K. Chaturvedi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Subir Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
16
|
Wang DK, Li L, Xu Q, Zhang J, Zheng H, Wei WT. 1,3-Difunctionalization of alkenes: state-of-the-art and future challenges. Org Chem Front 2021. [DOI: 10.1039/d1qo01002f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarizes the advances in 1,3-difunctionalization of alkenes mediated by Pd-, Ni-, Fe-, and Cu-based catalysts, as well as under metal-free conditions, with an emphasis on the reaction mechanisms and factors governing regioselectivity.
Collapse
Affiliation(s)
- Dong-Kai Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, 315211, P. R. China
| | - Long Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, 315211, P. R. China
| | - Qing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, 315211, P. R. China
| | - Jianfeng Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, 315211, P. R. China
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, 315211, P. R. China
| |
Collapse
|