1
|
Qiu YF, Li JH, Wang Q, Li M, Quan ZJ, Wang XC, Liang YM. Potassium Phosphate-Mediated Synthesis of C4-Phosphorylated Quinolines via Cascade Cycloisomerization of Ynones. Chemistry 2025; 31:e202403585. [PMID: 39498765 DOI: 10.1002/chem.202403585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/07/2024]
Abstract
A cascade phosphorylation cycloisomerization of readily accessible ynones and diphenylphosphine oxides facilitated by potassium phosphate is described, allowing for the straightforward synthesis of C4-phosphorylated quinoline scaffolds. The formation of a C-P bond and a C-N bond is achieved in a single procedure without the need for pre-assembled quinoline cores prior to phosphorylation. This transformation operates without the requirement for metals or oxidants and exhibits excellent compatibility with various functional groups. Furthermore, antimicrobial activity evaluation demonstrated that the synthesized C4-phosphorylated quinoline derivatives exhibited potent inhibitory activity against Staphylococcus aureus.
Collapse
Affiliation(s)
- Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Anning East Road 967, Lanzhou, Gansu, 730070, P. R. China
| | - Jin-Hao Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Anning East Road 967, Lanzhou, Gansu, 730070, P. R. China
| | - Qiang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Anning East Road 967, Lanzhou, Gansu, 730070, P. R. China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Anning East Road 967, Lanzhou, Gansu, 730070, P. R. China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Anning East Road 967, Lanzhou, Gansu, 730070, P. R. China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Anning East Road 967, Lanzhou, Gansu, 730070, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui South Road 222, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
2
|
Ren JA, Na JH, Gui C, Miao C, Chu XQ, Ma M, Xu H, Zhou X, Shen ZL. Nickel-Catalyzed Direct Cross-Coupling of Unactivated Aryl Fluorides with Aryl Bromides. Org Lett 2023; 25:5525-5529. [PMID: 37459275 DOI: 10.1021/acs.orglett.3c02000] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A nickel-catalyzed direct cross-coupling of unactivated aryl fluorides with aryl bromides is realized. The one-pot reaction, which avoids the use of preformed and sensitive organometallic reagents, proceeds effectively via C-F bond cleavage at room temperature in THF in the presence of the phosphine ligand and magnesium powder (with or without TMSCl) to produce the desired biaryls in modest to good yields.
Collapse
Affiliation(s)
- Jing-Ao Ren
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jin-He Na
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao Gui
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chengping Miao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mengtao Ma
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Xu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaocong Zhou
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Xu XH, Hao EJ, Shi Z, Dong ZB. Easy S-Alkylation of Arylthioureas and 2-Mercaptobenzothiazoles Using Tetraalkylammonium Salts under Transition-Metal-Free Conditions. J Org Chem 2022; 87:9675-9687. [PMID: 35896442 DOI: 10.1021/acs.joc.2c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly-efficient and practical method for S-alkylation of arylthioureas was reported. Using tetraalkylammonium salts as alkylation reagents, a series of 68 S-substituted aryl-isothioureas were obtained in good to excellent yields under transition-metal-free conditions. The protocol features simple performance, broad functional group tolerance, good to excellent yields, and easily available starting materials, showing potential synthetic value for the preparation of diverse biologically or pharmaceutically active compounds.
Collapse
Affiliation(s)
- Xiao-Hu Xu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Er-Jun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhen Shi
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.,Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.,Engineering Research Center of Phosphorus Resources Development and Utilization, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.,Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
4
|
Yu ZL, Chen JW, Chen YL, Zheng RJ, Ma M, Chen JP, Shen ZL, Chu XQ. DMSO-Promoted Difluoroalkylation of Organophosphonium Salts with Difluoroenol Silyl Ethers. Org Lett 2022; 24:5557-5561. [PMID: 35867631 DOI: 10.1021/acs.orglett.2c02088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient method for the synthesis of β,β-di(hetero)aryl-α,α-difluorinated ketones using readily available organophosphonium salts and difluoroenol silyl ethers has been developed. This mild reaction features a good functional group tolerance, a scaled-up synthesis, and synthetic simplicity. By taking advantage of DMSO as a less-toxic promoter and solvent for the difluoroalkylation and C-P bond functionalization, the use of transition-metal catalysts and sensitive additives could be avoided.
Collapse
Affiliation(s)
- Zi-Lun Yu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Jia-Wei Chen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yu-Lan Chen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Ren-Jun Zheng
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jian-Ping Chen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| |
Collapse
|
5
|
Guo MM, Song XD, Liu X, Zheng YW, Chu XQ, Rao W, Shen ZL. Iron(III)‐catalyzed difluoroalkylation of aryl alkynes with difluoroenol silyl ether in the presence of trimethylsilyl chloride. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Ge D, Sun LW, Yu ZL, Luo XL, Xu P, Shen ZL. Regioselective synthesis of 6-nitroindole derivatives from enaminones and nitroaromatic compounds via transition metal-free C-C and C-N bond formation. Org Biomol Chem 2022; 20:1493-1499. [PMID: 35107115 DOI: 10.1039/d1ob02443d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Few methods are known for the synthesis of nitroindole derivatives. A simple and practical Cs2CO3-promoted method for the synthesis of 6-nitroindole derivatives from enaminones and nitroaromatic compounds has been developed. Two new C-C and C-N bonds were formed in a highly regioselective manner under transition metal-free conditions.
Collapse
Affiliation(s)
- Danhua Ge
- Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Li-Wen Sun
- Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Zi-Lun Yu
- Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xin-Long Luo
- Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Pei Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Zhi-Liang Shen
- Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
7
|
Ge D, Chu XQ. Multiple-fold C–F bond functionalization for the synthesis of (hetero)cyclic compounds: fluorine as a detachable chemical handle. Org Chem Front 2022. [DOI: 10.1039/d1qo01749g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We highlighted the recent advances in the field of multiple-fold C–F bond functionalization for the synthesis of (hetero)cyclic compounds.
Collapse
Affiliation(s)
- Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
8
|
Sun LW, Yu ZL, Luo XL, Ma M, Shen ZL, Chu XQ. Transition-metal-free hydroamination/defluorination/cyclization of perfluoroalkyl alkynes with amidines. Org Chem Front 2022. [DOI: 10.1039/d1qo01439k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient defluorinative cyclization strategy for the construction of perfluoroalkyl-substituted pyrimidines by using perfluoroalkyl alkynes and amidines as substrates was developed.
Collapse
Affiliation(s)
- Li-Wen Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zi-Lun Yu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xin-Long Luo
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
9
|
An D, Sang J, Hu R, Chen J, Feng L, Rao W. Synthesis of 2‐Phosphoryl‐3‐Monofluorovinylindoles under Catalyst‐ and Additive‐Free Conditions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Di An
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Jingjing Sang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Rui Hu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Jichao Chen
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Li Feng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Weidong Rao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| |
Collapse
|
10
|
Wang QD, Wang YW, Xie T, Cui YY, Ma M, Shen ZL, Chu XQ. Three-Component Bisannulation for the Synthesis of Trifluoromethylated Tetracyclic Aza-Aromatics through Six C(sp 3)-F Bond Cleavage and Four C-N Bond Formation. J Org Chem 2021; 86:8236-8247. [PMID: 34061530 DOI: 10.1021/acs.joc.1c00695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An unprecedented and expeditious tandem bisannulation of polyfluoroalkylated tetralones with benzamidines to access various fluoroalkyl tetracyclic [1,3]-diazepines through multiple C-N bond formation and C(sp3)-F bond cleavage is reported. The process features high regio-/chemoselectivities, broad substrate scope, good functional group tolerance, procedural simplicity, mild reaction conditions, and scale-up synthesis. Mechanistic studies showed that the distinctive fluorine effect of polyfluoroalkyl tetralone plays a vital role for the aza-tetracycle construction.
Collapse
Affiliation(s)
- Qing-Dong Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.,School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Ya-Wen Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ting Xie
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Ying Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
11
|
Li XR, Li WX, Zhang ZW, Shen C, Zhou X, Chu XQ, Rao W, Shen ZL. Stereoselective synthesis of fluoroalkylated ( Z)-alkene via nickel-catalyzed and iron-mediated hydrofluoroalkylation of alkynes. Org Chem Front 2021. [DOI: 10.1039/d1qo00983d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient nickel-catalyzed, iron-mediated hydrofluoroalkylation of alkynes with bromodifluoroacetate or perfluoroalkyl iodide, which proceeded smoothly to give fluoroalkylated (Z)-alkenes with high stereocontrol (up to 99 : 1 Z/E), was developed.
Collapse
Affiliation(s)
- Xiang-Rui Li
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wen-Xin Li
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhuo-Wen Zhang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chuanji Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Xiaocong Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|