1
|
Li M, He M, Sun M, Li Y, Li M, Jiang X, Wang Y, Wang H. Oxylipins as therapeutic indicators of herbal medicines in cardiovascular diseases: a review. Front Pharmacol 2024; 15:1454348. [PMID: 39749208 PMCID: PMC11693728 DOI: 10.3389/fphar.2024.1454348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Globally, cardiovascular diseases (CVDs) remain the leading cause of death, and their prevention and treatment continue to face major challenges. Oxylipins, as novel circulating markers of cardiovascular disease, are crucial mediators linking cardiovascular risk factors such as inflammation and platelet activation, and they play an important role in unraveling cardiovascular pathogenesis and therapeutic mechanisms. Chinese herbal medicine plays an important role in the adjuvant treatment of cardiovascular diseases, which has predominantly focused on the key pathways of classic lipids, inflammation, and oxidative stress to elucidate the therapeutic mechanisms of cardiovascular diseases. However,The regulatory effect of traditional Chinese medicine on oxylipins in cardiovascular diseases remains largely unknown. With the increasing number of recent reports on the regulation of oxylipins by Chinese herbal medicine in cardiovascular diseases, it is necessary to comprehensively elucidate the regulatory role of Chinese herbal medicine in cardiovascular diseases from the perspective of oxylipins. This approach not only benefits further research on the therapeutic targets of Chinese herbal medicine, but also brings new perspectives to the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mengqi Li
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Min He
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengmeng Sun
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yongping Li
- Changchun Sino-Russian Science and Technology Park Co., Ltd., Changchun, Jilin, China
| | - Mengyuan Li
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaobo Jiang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yanxin Wang
- Department of Cardiovascular Rehabilitation, The Third Clinical Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hongfeng Wang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
2
|
Liu LW, Tang M, Zhang ZB, Zhou PP, Xue LP, Jia QQ, Zhao LG, Zuo LH, Sun Z. A stepwise integrated strategy to explore quality markers of Qishen Yiqi dripping pills against myocardial ischemia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156182. [PMID: 39488103 DOI: 10.1016/j.phymed.2024.156182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Numerous experiments and clinical practices have demonstrated the effectiveness of Qishen Yiqi dripping pills (QSYQ) on myocardial ischemia (MI). However, the bioactive ingredients and mechanisms remain unclear, leading to huge gaps between quality control and biological effect of QSYQ. Discovering quality markers (Q-markers) based on effective components is crucial for ensuring stable quality and clinical effectiveness of QSYQ. PURPOSE To explore Q-markers of QSYQ against MI by a stepwise strategy integrating serum pharmacochemistry, network pharmacology, metabolomics, quantitative analysis, and cell experiments. METHODS Firstly, liquid/gas chromatography-mass spectrometry was applied to characterize chemical profiles of QSYQ in vitro and in vivo. Based on the serum migrating constituents, a component-target-MI interaction network was constructed. Subsequently, pharmacodynamics and metabolomics were conducted to evaluate cardioprotective effect and potential mechanism of QSYQ. Next, conjoint analysis of network pharmacology and metabolomics was performed to screen candidate Q-markers. Finally, the measurability and bioactivity were validated to justify their usage as Q-markers. RESULTS A total of 97 components were identified in QSYQ, 24 prototypes of which were detected in serum. The "component-target-disease" interaction network was constructed based on serum migrating constituents. Pharmacodynamic results showed that QSYQ effectively improved cardiac function, attenuated inflammatory cell infiltration, alleviated myocardial fibrosis, and reduced the levels of myocardial enzymes and oxidative stress in MI rats. Metabolomics study demonstrated that 59 metabolites were markedly altered in MI rats, 25 of which were significantly reversely regulated by QSYQ. After integrative analysis of network pharmacology and metabolomics, 12 components were selected as candidate Q-markers of QSYQ, and the contents were quantified. These candidate Q-markers displayed synergistic protective effects against H2O2-induced injury in H9c2 cells. Taken together, 12 components with properties of transitivity and traceability, effectiveness, measurability, and compatibility contribution were defined as representative Q-markers of QSYQ, including Astragaloside IV, Ononin, Calycosin, Formononetin, Rosmarinic acid, Cryptotanshinone, Salvianolic acid A, Tanshinol, Ginsenoside Rb1, Ginsenoside Rg1, Nerolidol, and Santalol. CONCLUSION In this study, a novel stepwise integrated strategy was presented for discovering Q-markers related to therapeutic effects of traditional Chinese medicine prescriptions. Twelve comprehensive and representative Q-markers of QSYQ were identified for the first time to improve its quality control.
Collapse
Affiliation(s)
- Li-Wei Liu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Meng Tang
- The First Department of Orthopaedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, 450007, PR China
| | - Zhi-Bo Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Pei-Pei Zhou
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Lian-Ping Xue
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Qing-Quan Jia
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Ling-Guo Zhao
- Center for Disease Prevention and Control of Baoan District, Shenzhen, Guangdong Province, 518101, PR China
| | - Li-Hua Zuo
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China.
| | - Zhi Sun
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China.
| |
Collapse
|
3
|
Li X, Xie J, Li Y, Cui W, Zhang T, Li Q, Bi K, Liu R. A comprehensive strategy of lipidomics and pharmacokinetics based on ultra-high-performance liquid chromatography-mass spectrometry of Shaoyao Gancao Decoction. J Sep Sci 2024; 47:e2400421. [PMID: 39215583 DOI: 10.1002/jssc.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Shaoyao Gancao Decoction (SGD), a traditional Chinese medicine, has been proven to have a good liver protection effect, but the mechanism and pharmacodynamic substances of SGD in the treatment of acute liver injury are still unclear. In this study, an ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) method was established to characterize 107 chemical components of SGD and 12 compounds absorbed in rat plasma samples after oral administration of SGD. Network pharmacology was applied to construct a component-target-pathway network to screen the possible effective components of SGD in acute liver injury. Using lipidomics based on UHPLC-Q-TOF-MS coupled with a variety of statistical analyses, 20 lipid biomarkers were screened and identified, suggesting that the improvement of acute liver injury by SGD was involved in cholesterol metabolism, glycerol-phospholipid metabolism, sphingolipid signaling pathways and fatty acid biosynthesis. In addition, the UHPLC-tandem MS method was established for pharmacokinetics analysis, and 10 potential active components were determined simultaneously within 12 min through the optimization of 0.1% formic acid water and acetonitrile as a mobile phase system. A Pharmacokinetics study showed that paeoniflorin, albiflorin, oxypaeoniflorin, liquiritigenin, isoliquiritigenin, liquiritin, ononin, formononetin, glycyrrhizic acid, and glycyrrhetinic acid as the potential active compounds of SGD curing acute liver injury.
Collapse
Affiliation(s)
- Xin Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Juan Xie
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
| | - Yuhan Li
- School of Pharmacy, Macau University of Science and Technology, Macau, P. R. China
| | - Wenxuan Cui
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Tongrui Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Kaishun Bi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P. R. China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Ran Liu
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, P. R. China
| |
Collapse
|
4
|
He G, Chen G, Liu W, Ye D, Liu X, Liang X, Song J. Salvianolic Acid B: A Review of Pharmacological Effects, Safety, Combination Therapy, New Dosage Forms, and Novel Drug Delivery Routes. Pharmaceutics 2023; 15:2235. [PMID: 37765204 PMCID: PMC10538146 DOI: 10.3390/pharmaceutics15092235] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Salvianolic acid B is extracted from the roots and rhizomes of Danshen (Salvia miltiorrhiza Bge., family Labiatae). It is a water-soluble, weakly acidic drug that has demonstrated antitumor and anti-inflammatory effects on various organs and tissues such as the lung, heart, kidney, intestine, bone, liver, and skin and protective effects in diseases such as depression and spinal cord injury. The mechanisms underlying the protective effects of salvianolic acid B are mainly related to its anti-inflammatory, antioxidant, anti- or pro-apoptotic, anti- or pro-autophagy, anti-fibrotic, and metabolism-regulating functions. Salvianolic acid B can regulate various signaling pathways, cells, and molecules to achieve maximum therapeutic effects. This review summarizes the safety profile, combination therapy potential, and new dosage forms and delivery routes of salvianolic acid B. Although significant research progress has been made, more in-depth pharmacological studies are warranted to identify the mechanism of action, related signaling pathways, more suitable combination drugs, more effective dosage forms, and novel routes of administration of salvianolic acid B.
Collapse
Affiliation(s)
- Guannan He
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
| | - Guangfeng Chen
- Department of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Weidong Liu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
| | - Dongxue Ye
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
| | - Xuehuan Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Xiaodong Liang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
| | - Jing Song
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (G.H.); (W.L.); (D.Y.)
- Shandong Yuze Pharmaceutical Industry Technology Research Institute Co., Ltd., Dezhou 251200, China
| |
Collapse
|
5
|
Accurate determination for lipidomics based on LC-tandem-MS parameters modeling, prediction, and database: Monitoring the progression of hepatocellular carcinoma. J Pharm Biomed Anal 2023; 223:115126. [DOI: 10.1016/j.jpba.2022.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
6
|
Self-Assembling Anchorage of Hyaluronic Acid on the Nanoparticle Surface Confers Superiority of Triple Negative Breast Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14112461. [PMID: 36432652 PMCID: PMC9695327 DOI: 10.3390/pharmaceutics14112461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has been listed as one of the most fatal diseases, and no effective targeting treatment is clinically available. Although CD44-targeting hyaluronic acid (HA) has been utilized as targeting ligands in many studies, no facile ways have been developed through HA self-assembly at the nanoparticle surface. Herein, we reported N-isopropylacrylamide-grafted chitosan-based nanoparticles self-assembling with HA (HA-NPs) through electrostatic forces and loaded with curcumin (CUR). The HA-NPs displayed pH-responsive properties due to the chemical modification of chitosan, and the preparation process was optimized by central composite design-response surface methodology. HA anchorage confers the vehicle with tumor-targeting capability. HA-NPs displayed more robust effects of inhibiting TNBC primary tumor growth than free CUR and a plain counterpart but without increased systemic cytotoxicity. In addition, in vivo pharmacokinetic studies showed that HA-NPs significantly increased the in vivo residence time of free CUR and improved the bioavailability of CUR. These findings suggested that chitosan-based HA-NPs may provide a feasible and unique strategy to achieve CD44 targeting and enhance its efficacy in vivo for the treatment of advanced TNBC.
Collapse
|
7
|
Rao MJ, Tahir ul Qamar M, Wang D, Ali Q, Ma L, Han S, Duan M, Hu L, Wang L. A high-throughput lipidomics and transcriptomic approach reveals novel compounds from sugarcane linked with promising therapeutic potential against COVID-19. Front Nutr 2022; 9:988249. [PMID: 36118771 PMCID: PMC9480494 DOI: 10.3389/fnut.2022.988249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Sugarcane (Saccharum ssp., Poaceae) provides enormous metabolites such as sugars, lipid, and other dietary metabolites to humans. Among them, lipids are important metabolites that perform various functions and have promising pharmacological value. However, in sugarcane, few studies are focusing on lipidomics and few lipid compounds were reported, and their pharmacological values are not explored yet. The transcriptomic and widely targeted lipidomics approach quantified 134 lipid compounds from the rind of six sugarcane genotypes. These lipid compounds include 57 fatty acids, 30 lysophosphatidylcholines, 23 glycerol esters, 21 lysophosphatidylethanolamines, 2 phosphatidylcholines, and 1 sphingolipid. Among them, 119 compounds were first time reported in sugarcane rind. Seventeen lipids compounds including 12 fatty acids, 2 glycerol lipids, LysoPC 16:0, LysoPE 16:0, and choline alfoscerate were abundantly found in the rind of sugarcane genotypes. From metabolic and transcriptomic results, we have developed a comprehensive lipid metabolic pathway and highlighted key genes that are differentially expressed in sugarcane. Several genes associated with α-linolenic acid and linoleic acid biosynthesis pathways were highly expressed in the rind of the ROC22 genotype. ROC22 has a high level of α-linolenic acid (an essential fatty acid) followed by ROC16. Moreover, we have explored pharmacological values of lipid compounds and found that the 2-linoleoylglycerol and gingerglycolipid C have strong binding interactions with 3CLpro of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and these compounds can be utilized against SARS-CoV-2 as therapeutic agents. The transcriptome, metabolome, and bioinformatics analysis suggests that the sugarcane cultivars have a diversity of lipid compounds having promising therapeutic potential, and exploring the lipid metabolism will help to know more compounds that have promising cosmetic and pharmacological value.
Collapse
Affiliation(s)
- Muhammad Junaid Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | | | - Dongxin Wang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing, China
| | - Li Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Shijian Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Mingzheng Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Lihua Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
- Lihua Hu
| | - Lingqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- *Correspondence: Lingqiang Wang
| |
Collapse
|
8
|
Li L, Tian Y, Feng Y, Zhang S, Jiang Y, Zhang Y, Zhan Y, Wang C. Improvement in Mung Bean Peptide on High-Fat Diet-Induced Insulin Resistance Mice Using Untargeted Serum Metabolomics. Front Nutr 2022; 9:893270. [PMID: 35571892 PMCID: PMC9101312 DOI: 10.3389/fnut.2022.893270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/19/2022] Open
Abstract
This study aimed to elucidate the potential regulatory mechanism of mung bean peptides (MBPs) on glucolipid metabolism in insulin-resistant mice induced by high-fat diet (HFD) using untargeted serum metabolomics, enzyme linked immunosorbent assay (ELISA), intraperitoneal injection glucose tolerance test (IPGTT), insulin tolerance test (IPITT), and hematoxylin-eosin staining (H&E). The regulatory effect of MBPs for alleviating insulin resistance was studied by measuring body weight, fasting blood glucose (FBG) and serum insulin levels, C-Peptide levels, inflammatory and antioxidant factors, and histopathological observation of C57BL/6 mice. The experimental results showed that dietary intervention with MBPs (245 mg/kg/d) for 5 weeks significantly relieved insulin resistance in HFD mice. The body weight, insulin resistance index, and the levels of FBG, C-Peptide, IL-6, TNF-α, and MDA in the serum of HFD mice significantly decreased (P < 0.05). Conversely, SOD content and pancreatic β cell function index significantly increased (P < 0.05), and the damaged pancreatic tissue was repaired. One biomarker associated with insulin resistance was glycine. In addition, there were four important differential metabolites: pyroglutamate, D-glutamine, aminoadipic acid, and nicotinamide, involved in 12 metabolic pathway changes. It was found that MBPs may regulate amino acid, glycerol phospholipid, fatty acid, alkaloid, and nicotinamide metabolism to regulate the metabolic profile of HFD mice in a beneficial direction.
Collapse
Affiliation(s)
- Lina Li
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
- Library, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu Tian
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuchao Feng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shu Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yingjun Jiang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yiwei Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuanyuan Zhan
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Changyuan Wang
| |
Collapse
|
9
|
Rao MJ, Duan M, Yang M, Fan H, Shen S, Hu L, Wang L. Novel Insights into Anthocyanin Metabolism and Molecular Characterization of Associated Genes in Sugarcane Rinds Using the Metabolome and Transcriptome. Int J Mol Sci 2021; 23:338. [PMID: 35008763 PMCID: PMC8745048 DOI: 10.3390/ijms23010338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
Saccharum officinarum (sugarcane) is the fifth major cultivated crop around the world. Sugarcane rind is a promising source for anthocyanin pigments; however, limited information is available on the anthocyanin and its biosynthesis in sugarcane rinds. In this study, we have quantified 49 compounds including 6 flavonoids and 43 anthocyanins in the rind of 6 sugarcane cultivars by using LCMS/MS approach. Thirty of them were quantified for the first time in sugarcane. The 43 anthocyanins included 10 cyanidin (Cya), 11 pelargonidin (Pel), 9 peonidin (Peo), 5 malvidin (Mal), 4 delphinidin (Del), and 4 petunidin (Pet) metabolites. High contents of Cya derivatives were observed in the rind of YT71/210 (dark purple rind), such as cya-3-O-(6-O-malonyl)-glu 1283.3 µg/g and cya-3-O-glu 482.67 µg/g followed by ROC22 (red rind) 821.3 µg/g and 409 µg/g, respectively, whereas the YT93/159 (green rind) showed a minimum level of these compounds. Among six cultivars, ROC22 rind has high levels of Peo derivatives such as peo-3-O-glu (197 µg/g), peo-3-O-(6-O-malonyl)-glu (69 µg/g) and peo-3-O-(6-O-p-coumaryl)-glu (55.17 µg/g). The gene expression analysis revealed that some genes, including a MYB(t) gene, were highly associated with the color phenotype. Thus, we cloned and overexpressed the gene in Arabidopsis and found the pinkish brown color in the hypocotyl of all transgenic lines compared with the wild type. Hence, we have quantified a wide range of anthocyanins in major sugarcane cultivars, reported many new anthocyanins for the first time, and concluded that Cya and Peo derivatives are the major contributing factor of dissimilar colors in sugarcane. The finding and the verification of a novel MYB gene involved in anthocyanin biosynthesis have demonstrated that our study was very valuable for gene discovery and genetic improvement of sugarcane cultivars to harvest high anthocyanin contents.
Collapse
Affiliation(s)
- Muhammad Junaid Rao
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.J.R.); (M.D.); (M.Y.); (H.F.); (S.S.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Mingzheng Duan
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.J.R.); (M.D.); (M.Y.); (H.F.); (S.S.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Mingchong Yang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.J.R.); (M.D.); (M.Y.); (H.F.); (S.S.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Hongzeng Fan
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.J.R.); (M.D.); (M.Y.); (H.F.); (S.S.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Songhao Shen
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.J.R.); (M.D.); (M.Y.); (H.F.); (S.S.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Lihua Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Lingqiang Wang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.J.R.); (M.D.); (M.Y.); (H.F.); (S.S.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| |
Collapse
|