1
|
Rajan K, Thiruvengadam D, Umapathy K, Muthamildevi M, Sangamithirai M, Jayabharathi J, Padmavathy M. Greenly Synthesized Conducting Polymer Nanotunnels with Metal-Hydroxide Nanobundles in Single Dais for Unmitigated Water Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24292-24305. [PMID: 39503565 DOI: 10.1021/acs.langmuir.4c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Electrochemical water splitting required efficient electrocatalysts to produce clean hydrogen fuel. Here, we adopted greenway coprecipitation (GC) method to synthesize conducting polymer (CP) nanotunnel network affixed with luminal-abluminal CoNi hydroxides (GC-CoNiCP), namely, GC-Co1Ni2CP, GC-Co1.5Ni1.5CP, and GC-Co2Ni1CP. The active catalyst, GC-Co2Ni1CP/GC, has low oxygen evolution reaction (OER) overpotential (307 mV) and a smaller Tafel slope (47 mV dec-1) than IrO2 (125 mV dec-1). The electrochemical active surface area (EASA) normalized linear sweep voltammetry (LSV) curve exhibited outstanding intrinsic activity of GC-Co2Ni1CP, which required 285 mV to attain 10 mA cm-2. At 1.54 V, the estimated turnover frequency (TOF) of GC-Co2Ni1CP/GC (0.017337 s-1) was found to be 3-fold higher than that of IrO2 (0.0014 s-1). Furthermore, the GC-Co2Ni1CP/NF consumed a very low overpotential (281 mV) with a small Tafel slope of 121 mV dec-1. The ultrastability of GC-Co2Ni1CP for industrial application was confirmed by durability at 10 and 100 mA cm-2 for the OER (GC/NF-8 h, 2.0%/100 h, 2.2%) and overall water splitting (100 h, 3.8%), which implies that GC-Co2Ni1CP had adequate kinetics to address the elevated rates of water oxidation. The effect of pH and addition of tetramethylammonium cation (TMA+) reveal that GC-Co2Ni1CP follows the lattice oxygen mechanism (LOM). The solar-powered water electrolysis at 1.55 V supports the efficacy of GC-Co2Ni1CP in the solar-to-hydrogen conversion. The environmental impact studies and solar-driven water electrolysis proved that GC-CoNiCP has excellent greenness and efficiency, respectively.
Collapse
Affiliation(s)
- Kuppusamy Rajan
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Chidambaram, Tamilnadu 608002, India
| | - Dhanasingh Thiruvengadam
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Chidambaram, Tamilnadu 608002, India
| | - Krishnan Umapathy
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Chidambaram, Tamilnadu 608002, India
| | - Murugan Muthamildevi
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Chidambaram, Tamilnadu 608002, India
| | - Muthukumaran Sangamithirai
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Chidambaram, Tamilnadu 608002, India
| | - Jayaraman Jayabharathi
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Chidambaram, Tamilnadu 608002, India
| | - Manoharan Padmavathy
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Chidambaram, Tamilnadu 608002, India
| |
Collapse
|
2
|
Bhatti AL, Tahira A, Kumar S, Ujjan ZA, Bhatti MA, Kumar S, Aftab U, Karsy A, Nafady A, Infantes-Molina A, Ibupoto ZH. Facile synthesis of efficient Co 3O 4 nanostructures using the milky sap of Calotropis procera for oxygen evolution reactions and supercapacitor applications. RSC Adv 2023; 13:17710-17726. [PMID: 37333727 PMCID: PMC10273030 DOI: 10.1039/d3ra02555a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/27/2023] [Indexed: 06/20/2023] Open
Abstract
The preparation of Co3O4 nanostructures by a green method has been rapidly increasing owing to its promising aspects, such as facileness, atom economy, low cost, scale-up synthesis, environmental friendliness, and minimal use of hazardous chemicals. In this study, we report on the synthesis of Co3O4 nanostructures using the milky sap of Calotropis procera (CP) by a low-temperature aqueous chemical growth method. The milky sap of CP-mediated Co3O4 nanostructures were investigated for oxygen evolution reactions (OERs) and supercapacitor applications. The structure and shape characterizations were done by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) techniques. The prepared Co3O4 nanostructures showed a heterogeneous morphology consisting of nanoparticles and large micro clusters. A typical cubic phase and a spinel structure of Co3O4 nanostructures were also observed. The OER result was obtained at a low overpotential of 250 mV at 10 mA cm-2 and a low Tafel slope of 53 mV dec-1. In addition, the durability of 45 hours was also found at 20 mA cm-2. The newly prepared Co3O4 nanostructures using the milky sap of CP were also used to demonstrate a high specific capacitance of 700 F g-1 at a current density of 0.8 A g-1 and a power density of 30 W h kg-1. The enhanced electrochemical performance of Co3O4 nanostructures prepared using the milky sap of CP could be attributed to the surface oxygen vacancies, a relatively high amount of Co2+, the reduction in the optical band gap and the fast charge transfer rate. These surface, structural, and optical properties were induced by reducing, capping, and stabilizing agents from the milky sap of CP. The obtained results of OERs and supercapacitor applications strongly recommend the use of the milky sap of CP for the synthesis of diverse efficient nanostructured materials in a specific application, particularly in energy conversion and storage devices.
Collapse
Affiliation(s)
| | - Aneela Tahira
- Institute of Chemistry, Shah Abdul Latif University Khairpur Mirs Sindh Pakistan
| | - Shusheel Kumar
- Institute of Physics, University of Sindh Jamshoro 76080 Sindh Pakistan
| | | | - Muhammad Ali Bhatti
- Centre for Environmental Sciences, University of Sindh Jamshoro 76080 Sindh Pakistan
| | - Sooraj Kumar
- Department of Chemical Engineering, Mehran University of Engineering and Technology 7680 Jamshoro Sindh Pakistan
| | - Umair Aftab
- Department of Metallurgy and Materials, Mehran University of Engineering and Technology 7680 Jamshoro Sindh Pakistan
| | - Amal Karsy
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE) Cairo Egypt
| | - Ayman Nafady
- Chemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Antonia Infantes-Molina
- Department of Inorganic Chemistry, Crystallography and Mineralogy, Unidad Asociada al ICP-CSIC, Faculty of Sciences, University of Malaga, Campus de Teatinos 29071 Malaga Spain
| | | |
Collapse
|
3
|
Yau AM, Khaligh A, Tuncel D. Triazine/thiophene‐based microporous organic polymer for electrocatalytic hydrogen evolution reaction. J Appl Polym Sci 2022. [DOI: 10.1002/app.53492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arma Musa Yau
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM) Bilkent University Ankara Turkey
| | - Aisan Khaligh
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM) Bilkent University Ankara Turkey
- Department of Chemistry Bilkent University Ankara Turkey
| | - Dönüs Tuncel
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM) Bilkent University Ankara Turkey
- Department of Chemistry Bilkent University Ankara Turkey
| |
Collapse
|
4
|
Wang H, Li S, Sun G, Lu G, Bu Q, Kong X, Liu Q. Trace W-doping flocculent Co3O4 nanostructures with enhanced electrocatalytic performance for methanol oxidation reaction. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Worku AK, Ayele DW, Habtu NG, Ambaw MD. Engineering nanostructured Ag doped α-MnO 2 electrocatalyst for highly efficient rechargeable zinc-air batteries. Heliyon 2022; 8:e10960. [PMID: 36254283 PMCID: PMC9568855 DOI: 10.1016/j.heliyon.2022.e10960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Engineering of highly active, and non-precious electrocatalysts are vital to enhance the air-electrodes of rechargeable zinc-air batteries (ZABs). We report a facile co-precipitation technique to develop Ag doped α-MnO2 nanoparticles (NPs) and investigate their application as cathode materials for ZABs. The electrochemical and physical characteristics of α-MnO2 and Ag doped α-MnO2 NPs were compared and examined via CP, CV, TGA/DTA, FT-IR, EIS, and XRD analysis. CV result displayed higher potential and current for ORR in Ag doped α-MnO2 NPs than α-MnO2; but, ORR performance decreased when the Ag doping was raised from 7.5 to10 mmol. Moreover, α-MnO2 and Ag doped α-MnO2 NPs showed 2.1 and 3.8 electron transfer pathway, respectively, showing Ag doped α-MnO2 performance to act as an active ORR electrocatalyst for ZABs. The EIS investigation exhibited that charge-transfer resistance for Ag doped α-MnO2 was extremely lower associated to the MnO2 demonstrating that the successful loading of Ag in α-MnO2. A homemade ZAB based on Ag–MnO2-7.5 showed a high open circuit potential, low ohmic resistances, and excellent discharge profile at a constant current density of 1 mA/g. Moreover, Ag–MnO2-7.5 show a specific capacity of 795 mA h g−1 with corresponding high energy density ∼875 Wh kg−1 at 1 mA cm−2 discharging conditions. Ag doped α-MnO2 electrode for rechargeable zinc–air battery was prepared via a facile co-precipitation technique. Ag doped α-MnO2 electrode shows lower charge transfer resistance associated to un-doped MnO2 electrode. Ag doped α-MnO2 shows enhanced ORR kinetics in oxygen electrode potential. The capacitance performance of Ag doped α-MnO2 electrodes was highly improved. Ag doped α-MnO2 electrode showed energy density of 69.3 W h kg−1 and power density of 722.9 W kg−1.
Collapse
Affiliation(s)
- Ababay Ketema Worku
- Bahir Dar Energy Center, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, P. O. Box 26, Ethiopia
| | - Delele Worku Ayele
- Bahir Dar Energy Center, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, P. O. Box 26, Ethiopia,Department of Chemistry, College of Science, Bahir Dar University, P. O. Box 79, Bahir Dar, Ethiopia,Corresponding author.
| | - Nigus Gabbiye Habtu
- Bahir Dar Energy Center, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, P. O. Box 26, Ethiopia,Faculty of Chemical Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P. O. Box 26, Bahir Dar, Ethiopia,Corresponding author.
| | - Mehary Dagnew Ambaw
- Department of Industrial Chemistry, College of Science, Bahir Dar University, P. O. Box 79, Bahir Dar, Ethiopia
| |
Collapse
|
6
|
Niyitanga T, Kim H. Reduced Graphene Oxide Supported Zinc/Cobalt oxide nanoparticles as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
|
8
|
Huang Y, Ye Z, Pei F, Ma G, Peng X, Li D. Strain in a platinum plate induced by an ultrahigh energy laser boosts the hydrogen evolution reaction. RSC Adv 2021; 11:39087-39094. [PMID: 35492455 PMCID: PMC9044436 DOI: 10.1039/d1ra06688a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
The ligand and the strain near the active sites in catalysts jointly affect the electrocatalytic activity for the catalytic industry. In many cases, there is no effective strategy for the independent study of the strain effect without the ligand effect on the electrocatalytic activity for the hydrogen evolution reaction (HER). Laser shock peening (LSP) with a GW cm-2 level power density and a 10-30 ns short pulse is employed to form compressive strain on the surface and in the depth direction of a platinum (Pt) plate, which changes the inherent interatomic distance and modifies the energy level of the bonded electrons, thereby greatly optimizing the energy barrier for the HER. The crystal lattice near the surface of the LSP Pt plate is distorted by the strain, and the interplanar spacing decreases from 0.225 nm in the undeformed region to 0.211 nm in the deformed region. The specific activity of the LSP Pt has an increase of 2.9 and 6.4 times in comparison with that of the pristine Pt in alkaline and acidic environments, respectively. This investigation provides a novel strategy for the independent study of the strain effect on the electrocatalytic activity and the improvement of electrocatalysts with high performance in extensive energy conversion.
Collapse
Affiliation(s)
- Yuqian Huang
- School of Material Science and Engineering, Nanchang Hangkong University 696#, Feng HeNan Road Nanchang 330063 China
| | - Zhiguo Ye
- School of Material Science and Engineering, Nanchang Hangkong University 696#, Feng HeNan Road Nanchang 330063 China
| | - Feng Pei
- State Grid JiangXi Electric Power Research Institute Nanchang 330096 China
| | - Guang Ma
- State Key Laboratory of Advanced Power Transmission Technology (Global Energy Interconnection Research Institute Co. Ltd) Beijing 102209 China
| | - Xinyuan Peng
- School of Material Science and Engineering, Nanchang Hangkong University 696#, Feng HeNan Road Nanchang 330063 China
| | - Duosheng Li
- School of Material Science and Engineering, Nanchang Hangkong University 696#, Feng HeNan Road Nanchang 330063 China
| |
Collapse
|
9
|
Validation of enhanced OER performance of the amorphous Al2O3-added Co3O4/NiO two-dimensional ternary nanocomposite. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01898-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Ali Z, Mehmood M, Ahmad J, Naz S, Khan Y. Heteroatoms (N, F, O)-Doped CNTs on NiCo-Silica Nanocomposites for Oxygen Evolution Reaction. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04866-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|