1
|
Liu G, Li S, Shi C, Huo M, Lin Y. Progress in Research and Application of Metal-Organic Gels: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1178. [PMID: 37049272 PMCID: PMC10096755 DOI: 10.3390/nano13071178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
In recent years, metal-organic gels (MOGs) have attracted much attention due to their hierarchical porous structure, large specific surface area, and good surface modifiability. Compared with MOFs, the synthesis conditions of MOGs are gentler and more stable. At present, MOGs are widely used in the fields of catalysis, adsorption, energy storage, electrochromic devices, sensing, analysis, and detection. In this paper, literature metrology and knowledge graph visualization analysis are adopted to analyze and summarize the literature data in the field of MOGs. The visualization maps of the temporal distribution, spatial distribution, authors and institutions' distribution, influence of highly cited literature and journals, keyword clustering, and research trends are helpful to clearly grasp the content and development trend of MOG materials research, point out the future research direction for scholars, and promote the practical application of MOGs. At the same time, the paper reviews the research and application progress of MOGs in recent years by combining keyword clustering, time lines, and emergence maps, and looks forward to their challenges, future development trend, and application prospects.
Collapse
Affiliation(s)
- Gen Liu
- School of Environment, Northeast Normal University, Changchun 130117, China
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Siwen Li
- School of Environment, Northeast Normal University, Changchun 130117, China
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chunyan Shi
- Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan
| | - Mingxin Huo
- School of Environment, Northeast Normal University, Changchun 130117, China
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yingzi Lin
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
2
|
Fan WK, Tahir M. Structured clay minerals-based nanomaterials for sustainable photo/thermal carbon dioxide conversion to cleaner fuels: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157206. [PMID: 35810906 DOI: 10.1016/j.scitotenv.2022.157206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
In efforts to achieve a sustainable development goal, the utilization of CO2 to generate renewable fuels is promising, as it is a sustainable technology that provides affordable and clean energy. To realize the production of renewable green fuels, a proficient and low-cost technology is required. Using photo/thermal catalytic process, the goal of sustainable CO2 hydrogenation can be achieved. There have been several types of catalysts under exploration, however, they are expensive with limited availability. In the current development, green materials such as mineral clays are emerging as cocatalyst/supports for CO2 hydrogenation. Clays are bestowed with various beneficial properties such as a large surface area, high porosity, abundant basic sites, excellent thermal stability and chemical corrosion resistance. Clays are promising materials that can drastically reduce the cost in catalyst preparation, partially fulfil the energy demand and reduce greenhouse gas emission. This review aims to focus on the various types of clays and their applications in the field of photo/thermal CO2 hydrogenation to renewable fuels. Firstly, the classifications of clays are provided, whereby they can be differentiated based on their silicate layers, namely 1:1 and 2:1 type clay and their properties are thoroughly discussed to provide advantages and applications. The applications of various clays such as kaolinite, halloysite, montmorillonite, attapulgite, saponite and volkonskoite for CO2 hydrogenation reactions are systematically discoursed. In addition, various approaches to improve the capability of raw clays as catalyst support are critically discussed, which include thermal treatment, exfoliation, acid-leaching and pillaring approaches. A critical discussion regarding the engineering aspects to further enhance clay-based catalyst for CO2 hydrogenation are further disclosed. In short, clays are freely available materials that can be found in abundance. However, there are many more different types of natural green clays that have not been studied and explored in various energy applications.
Collapse
Affiliation(s)
- Wei Keen Fan
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
3
|
Khoshbin Z, Davoodian N, Taghdisi SM, Abnous K. Metal organic frameworks as advanced functional materials for aptasensor design. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121251. [PMID: 35429856 DOI: 10.1016/j.saa.2022.121251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/18/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Advancement in coordination chemistry has achieved an impressive development of metal organic frameworks (MOFs) as the supramolecular hybrid materials, comprising harmonized metal nodes with organic ligands. Scope and approach: MOFs offer the unique properties of easy synthesis, nanoscale structure, adjustable size and morphology, high porosity, large surface area, supreme chemical tunability and stability, and biocompatibility. The features provide an exceptional opportunity for the widely usage of MOFs in the different scientific fields, e.g. biomedicine, electrocatalysis, food safety, energy storage, environmental surveillance, and biosensing platforms. The synergistic incorporation of the aptamer advantages and the superiorities of MOFs attains the novel MOF-based aptasensors. The excellent selectivity and sensitivity of the MOF-based aptasensors nominate them as efficient lab-on-chip tools for cost-effective, label-free, portable, and real-time monitoring of diverse targets. KEY FINDINGS AND CONCLUSIONS Here, we review the achievements in the sensor design by cooperation of MOF motifs and aptamers with the conspicuous potential of determining the targets. Finally, some results are expressed that provide a valuable viewpoint for developing the novel MOF-based test strips in the future.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Davoodian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Verma P, Rahimi FA, Samanta D, Kundu A, Dasgupta J, Maji TK. Visible-Light-Driven Photocatalytic CO 2 Reduction to CO/CH 4 Using a Metal-Organic "Soft" Coordination Polymer Gel. Angew Chem Int Ed Engl 2022; 61:e202116094. [PMID: 35129254 DOI: 10.1002/anie.202116094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/11/2022]
Abstract
The self-assembly of a well-defined and astutely designed, low-molecular weight gelator (LMWG) based linker with a suitable metal ion is a promising method for preparing photocatalytically active coordination polymer gels. Here, we report the design, synthesis, and gelation behaviour of a tetrapodal LMWG based on a porphyrin core connected to four terpyridine units (TPY-POR) through amide linkages. The self-assembly of TPY-POR LMWG with RuII ions results in a Ru-TPY-POR coordination polymer gel (CPG), with a nanoscroll morphology. Ru-TPY-POR CPG exhibits efficient CO2 photoreduction to CO (3.5 mmol g-1 h-1 ) with >99 % selectivity in the presence of triethylamine (TEA) as a sacrificial electron donor. Interestingly, in the presence of 1-benzyl-1,4-dihydronicotinamide (BNAH) with TEA as the sacrificial electron donor, the 8e- /8H+ photoreduction of CO2 to CH4 is realized with >95 % selectivity (6.7 mmol g-1 h-1 ). In CPG, porphyrin acts as a photosensitizer and covalently attached [Ru(TPY)2 ]2+ acts as a catalytic center as demonstrated by femtosecond transient absorption (TA) spectroscopy. Further, combining information from the in situ DRIFT spectroscopy and DFT calculation, a possible reaction mechanism for CO2 reduction to CO and CH4 was outlined.
Collapse
Affiliation(s)
- Parul Verma
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Debabrata Samanta
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Arup Kundu
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| |
Collapse
|
5
|
Verma P, Rahimi FA, Samanta D, Kundu A, Dasgupta J, Maji TK. Visible‐Light‐Driven Photocatalytic CO
2
Reduction to CO/CH
4
Using a Metal–Organic “Soft” Coordination Polymer Gel. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Parul Verma
- Molecular Materials Laboratory School of Advanced Materials (SAMat) Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory School of Advanced Materials (SAMat) Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Debabrata Samanta
- Molecular Materials Laboratory School of Advanced Materials (SAMat) Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Arup Kundu
- Department of Chemical Sciences Tata Institute of Fundamental Research (TIFR) Mumbai 400005 India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences Tata Institute of Fundamental Research (TIFR) Mumbai 400005 India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory School of Advanced Materials (SAMat) Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| |
Collapse
|
6
|
Wychowaniec JK, Saini H, Scheibe B, Dubal DP, Schneemann A, Jayaramulu K. Hierarchical porous metal–organic gels and derived materials: from fundamentals to potential applications. Chem Soc Rev 2022; 51:9068-9126. [DOI: 10.1039/d2cs00585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes recent progress in the development and applications of metal–organic gels (MOGs) and their hybrids and derivatives dividing them into subclasses and discussing their synthesis, design and structure–property relationship.
Collapse
Affiliation(s)
- Jacek K. Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Haneesh Saini
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| | - Błażej Scheibe
- Adam Mickiewicz University in Poznań, NanoBioMedical Centre, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland
| | - Deepak P. Dubal
- School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl für Anorganische Chemie I, Technische Universität Dresden, Bergstr. 66, 01067 Dresden, Germany
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| |
Collapse
|
7
|
Fan WK, Tahir M. Current Trends and Approaches to Boost the Performance of Metal Organic Frameworks for Carbon Dioxide Methanation through Photo/Thermal Hydrogenation: A Review. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02058] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wei Keen Fan
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor 81310, Malaysia
| | - Muhammad Tahir
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor 81310, Malaysia
- Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
8
|
Sun S, Wei C, Xiao Y, Li G, Zhang J. Zirconium-based metal-organic framework gels for selective luminescence sensing. RSC Adv 2020; 10:44912-44919. [PMID: 35516264 PMCID: PMC9058640 DOI: 10.1039/d0ra09035b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/03/2020] [Indexed: 01/15/2023] Open
Abstract
Metal-organic gelation represents a promising approach to fabricate functional nanomaterials. Herein a series of Zr-carboxylate gels are synthesized from rigid pyrene, porphyrin and tetraphenyl ethylene-derived tetracarboxylate linkers, namely Zr-TBAPy (H4TBAPy = 1,3,6,8-tetrakis(4-carboxylphenyl)pyrene), Zr-TCPE (H4TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene), and Zr-TCPP (H4TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin). The gels are aggregated from metal-organic framework (MOF) nanoparticles. Zr-TBAPy gel consists of NU-901 nanoparticles, and Zr-TCPP gel consists of PCN-224 nanoparticles. The xerogels show high surface areas up to 1203 m2 g-1. MOF gel films are also anchored on the butterfly wing template to yield Zr-MOF/B composites. Zr-TBAPy and Zr-TCPE gels are luminescent for solution-phase sensing and vapour-phase sensing of volatile organic compounds, and exhibit a significant luminescence quenching effect for electron-deficient analytes. Arising from the high porosity and good dispersion of luminescent MOF gels, rapid and effective vapour-sensing of nitrobenzene and 2-nitrotoluene within 30 s has been achieved via Zr-TBAPy film or Zr-TBAPy/B.
Collapse
Affiliation(s)
- Shujian Sun
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Caifeng Wei
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Yali Xiao
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Guangqin Li
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Jianyong Zhang
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemical Engineering and Technology, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
9
|
Sun S, Xiao Y, He L, Tong Y, Liu D, Zhang J. Zr‐Based Metal‐Organic Framework Films Grown on Bio‐Template for Photoelectrocatalysis. ChemistrySelect 2020. [DOI: 10.1002/slct.202003939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shujian Sun
- Sun Yat-Sen University MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemistry Guangzhou 510275 China
| | - Yali Xiao
- Sun Yat-Sen University MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemistry Guangzhou 510275 China
| | - Lanqi He
- Sun Yat-Sen University MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemistry Guangzhou 510275 China
| | - Yexiang Tong
- Sun Yat-Sen University MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemistry Guangzhou 510275 China
| | - Dingxin Liu
- Sun Yat-Sen University MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemistry Guangzhou 510275 China
| | - Jianyong Zhang
- Sun Yat-Sen University MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, School of Chemistry Guangzhou 510275 China
| |
Collapse
|