1
|
Hu H, Yan M, Jiang J, Huang A, Cai S, Lan L, Ye K, Chen D, Tang K, Zuo Q, Zeng Y, Tang W, Fu J, Jiang C, Wang Y, Yan Z, He X, Qiao L, Zhao Y. A state-of-the-art review on biomass-derived carbon materials for supercapacitor applications: From precursor selection to design optimization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169141. [PMID: 38072258 DOI: 10.1016/j.scitotenv.2023.169141] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
Biomass-derived carbon materials have the characteristics of a wide range of precursor sources, controllable carbon nano-dimension, large specific surface area and abundant heteroatoms doping. At present, biomass-derived carbon materials have been widely used in electrochemical energy storage devices, especially the research and development of biomass-derived carbon materials for supercapacitors has become mature and in-depth. Therefore, it is of importance to summarize the advanced technologies and strategies for optimizing biomass-derived carbon materials for supercapacitors, which will effectively promote the further development of high-performance supercapacitors. In this review, the recent research progress of biomass-derived carbon materials is provided in detail, including the selection of biomass precursors, the design of carbon nano-dimension and the theory of heteroatom doping. Besides, the preparation methods of biomass-derived carbon materials and the related processes of optimizing the electrochemical performance are also summarized. This review ends with the perspectives for future research directions and challenges in the field of biomass-derived carbon materials for electrochemical applications. This review aims to provide helpful reference information for the nano-dimensional design and electrochemical performance optimization of biomass-derived carbon materials for the practical application of supercapacitors.
Collapse
Affiliation(s)
- Hengyuan Hu
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Minglei Yan
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China.
| | - Jietao Jiang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Ankui Huang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Sicheng Cai
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Linxuan Lan
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Kewei Ye
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Danlei Chen
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Kewen Tang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Qin Zuo
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Yun Zeng
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Wei Tang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Junheng Fu
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Chenglu Jiang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Yong Wang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Xi He
- Shaanxi Joint Laboratory of Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yang Zhao
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
2
|
Pawelski D, Plonska-Brzezinska ME. Microwave-Assisted Synthesis as a Promising Tool for the Preparation of Materials Containing Defective Carbon Nanostructures: Implications on Properties and Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6549. [PMID: 37834689 PMCID: PMC10573823 DOI: 10.3390/ma16196549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
In this review, we focus on a small section of the literature that deals with the materials containing pristine defective carbon nanostructures (CNs) and those incorporated into the larger systems containing carbon atoms, heteroatoms, and inorganic components.. Briefly, we discuss only those topics that focus on structural defects related to introducing perturbation into the surface topology of the ideal lattice structure. The disorder in the crystal structure may vary in character, size, and location, which significantly modifies the physical and chemical properties of CNs or their hybrid combination. We focus mainly on the method using microwave (MW) irradiation, which is a powerful tool for synthesizing and modifying carbon-based solid materials due to its simplicity, the possibility of conducting the reaction in solvents and solid phases, and the presence of components of different chemical natures. Herein, we will emphasize the advantages of synthesis using MW-assisted heating and indicate the influence of the structure of the obtained materials on their physical and chemical properties. It is the first review paper that comprehensively summarizes research in the context of using MW-assisted heating to modify the structure of CNs, paying attention to its remarkable universality and simplicity. In the final part, we emphasize the role of MW-assisted heating in creating defects in CNs and the implications in designing their properties and applications. The presented review is a valuable source summarizing the achievements of scientists in this area of research.
Collapse
Affiliation(s)
| | - Marta E. Plonska-Brzezinska
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland;
| |
Collapse
|
3
|
Kumari P, Tripathi KM, Awasthi K, Gupta R. Sustainable carbon nano-onions as an adsorbent for the efficient removal of oxo-anions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15480-15489. [PMID: 36169824 DOI: 10.1007/s11356-022-22883-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
The increasing threats of oxo-anions in drinking water have posed a serious threat to human health, aquatic environment, ecology, and sustainability. Accordingly, developments of cost-effective and sustainable nanomaterials for water remediation are on top priority and highly sought in global research community. Carbon nano-onions (CNOs) are one of the emerging nanomaterials for water purification because of its unique morphology, surface reactivity, high density of surface-active sites, and microporous structure. Herein, flaxseed oil-derived CNOs are utilized as efficient adsorbent for the removal of toxic oxo-anions. Aside from the green and economic nature, CNOs provide high adsorption efficiency ~ 806.45 mg g-1 for the removal of [Formula: see text] (99.9%) from aqueous system at ambient temperature, neutral pH in 70 min. The adsorption of [Formula: see text] onto CNOs was well fitted in pseudo-second order kinetics and followed the Langmuir adsorption isotherm model. The adsorption process was determined to be exothermic and spontaneous from the resulting thermodynamic characteristics. Furthermore, the high hydrophobic nature of CNOs make it recycling simpler. The real-life applicability of CNOs towards [Formula: see text] removal was tested in tap water, river water, and dam water. With all these observed results, CNOs show promise for practical water remediation applications.
Collapse
Affiliation(s)
- Poonam Kumari
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| | - Kumud Malika Tripathi
- Department of Chemistry, Indian Institute of Petroleum and Energy, Vishakhapatnam, Andhra Pradesh, 530003, India
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
| | - Ragini Gupta
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
| |
Collapse
|
4
|
Marzi Khosrowshahi E, Farajzadeh MA, Tuzen M, Afshar Mogaddam MR, Nemati M. Application of magnetic carbon nano-onions in dispersive solid-phase extraction combined with DLLME for extraction of pesticide residues from water and vegetable samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3592-3604. [PMID: 34308461 DOI: 10.1039/d1ay00861g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A dispersive solid-phase microextraction method based on magnetic carbon nano-onions (MCNOs) was developed for the extraction and preconcentration of some pesticides from water and vegetable samples. For more cleanup and preconcentration, a dispersive liquid-liquid microextraction (DLLME) method was employed after performing the first step. In this method, firstly, MCNOs were prepared and then used for adsorption of the analytes from the sample solution. After that, the adsorbed analytes were eluted with an appropriate water-miscible organic solvent and used as a dispersive solvent in the following DLLME procedure. The extracted analytes were quantified by gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) mode. Various factors affecting the method efficiency such as sorbent weight, salt effect, pH, temperature, and type and volume of eluent and extraction solvent were optimized. This method showed wide linear ranges with a coefficient of determination ≥ 0.994, and low limits of detection (0.001-0.005 ng mL-1) and quantification (0.003-0.019 ng mL-1) under optimal conditions. Also, a good precision (relative standard deviation ≤ 8.6%) for five replicates and a satisfactory accuracy (mean relative recoveries between 82 and 99%) were obtained. It can be considered as an efficient and environment friendly method for the extraction of analytes from vegetable and fruit juices and water samples.
Collapse
|
5
|
Wei X, Yin G, Zhou X, Li L, Li M, Qin Y, Hou X, Song G, Ali Z, Dai W, Zhao S, Fang X, Lin CT, Jiang N, Yu J. Carbon nano-onions as a nanofiller for enhancing thermal conductivity of epoxy composites. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01799-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Cheng L, Liu S, He G, Hu Y. The simultaneous removal of heavy metals and organic contaminants over a Bi2WO6/mesoporous TiO2 nanotube composite photocatalyst. RSC Adv 2020; 10:21228-21237. [PMID: 35518737 PMCID: PMC9054361 DOI: 10.1039/d0ra03430d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/19/2020] [Indexed: 01/12/2023] Open
Abstract
In this study, Bi2WO6/mesoporous TiO2 nanotube composites (BWO/TNTs) were successfully synthesized to remove the heavy metal Cr(vi) and refractory organic compound dibutyl phthalate (DBP) from contaminated water under visible light. Coupling TNTs with BWO can greatly improve the photocatalytic activity of the catalyst for treating Cr(vi)–DBP mixed pollutants because of synergetic effects from Cr(vi) and DBP. Specifically, the visible-light photocatalytic activities of 3% BWO/TNTs for removing DBP and Cr(vi) from mixed pollutant solutions were 10.8 and 3.8 times higher than those of BWO. Firstly, this system can take full advantage of charge carriers and can spatially separate reduction sites and oxidation sites in the photocatalyst. Secondly, TNTs has a unique multiscale channel structure that can enhance mass transfer and light utilization. These characteristics lead to very obvious photocatalytic activity improvements. In addition, the BWO/TNTs composite photocatalysts exhibited excellent stability and durability under visible and UV light irradiation. This work demonstrated a feasible method for fabricating composite photocatalysts and applied them to the simultaneous removal of heavy metal and refractory organic pollutants from contaminated water. In this study, Bi2WO6/mesoporous TiO2 nanotube composites (BWO/TNTs) were successfully synthesized to remove the heavy metal Cr(vi) and refractory organic compound dibutyl phthalate (DBP) from contaminated water under visible light.![]()
Collapse
Affiliation(s)
- Lei Cheng
- School of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- P. R. China
| | - Sijia Liu
- School of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- P. R. China
| | - Guangying He
- School of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- P. R. China
| | - Yun Hu
- School of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- P. R. China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control
| |
Collapse
|